Font Size: a A A

Fold-thrust belt and foreland basin system evolution of northwestern Montana

Posted on:2011-10-25Degree:Ph.DType:Dissertation
University:The University of ArizonaCandidate:Fuentes, FacundoFull Text:PDF
GTID:1440390002465428Subject:Geology
Abstract/Summary:
This investigation focuses on the Jurassic-Eocene sedimentary record of northwestern Montana and the geometry and kinematics of the thrust belt, in order to develop a unifying geodynamic-stratigraphic model to explain the evolution of the Cordilleran retroarc of this region. Provenance and subsidence analyses suggest the onset of a foreland basin system by Middle Jurassic time. U-Pb ages of detrital zircons and detrital modes of sandstones indicate provenance from accreted terranes and deformed miogeoclinal rocks. Subsidence commenced at ∼170 Ma and followed a sigmoidal pattern characteristic of foreland basin systems. Jurassic deposits of the Ellis Group and Morrison Formation accumulated in a back-bulge depozone. A regional unconformity/paleosol zone separates the Morrison from Cretaceous deposits. This unconformity was possible result of forebulge migration, decreased dynamic subsidence, and eustatic sea level fall. The late Barremian(?)-early Albian Kootenai Formation is the first unit in the foreland that consistently thickens westward. The subsidence curve at this time begins to show a convex-upward pattern characteristic of foredeeps. The location of thrust belt structures during the Late Jurassic and Early Cretaceous is uncertain, but provenance information indicates exhumation of the Intermontane and Omineca belts, and deformation of miogeocline strata, possibly on the western part of the Purcell anticlinorium. By Albian time, the thrust belt had propagated to the east and incorporated Proterozoic rocks of the Belt Supergroup as indicated by provenance data in the Blackleaf Formation, and by cross-cutting relationships in thrust sheets involving Belt rocks. From Late Cretaceous to early Eocene time the retroarc developed a series of thrust systems including the Moyie, Snowshoe, Libby, Pinkham, Lewis-Eldorado-Steinbach-Hoadley, the Sawtooth Range and the foothills structures. The final stage in the evolution of the compressive retroarc system is recorded by the Paleocene-early Eocene Fort Union and Wasatch Formations, which are preserved in the distal foreland. A new ∼145 Km balanced cross-section indicates ∼130 km of shortening. Cross-cutting relationships, thermochronology and geochronology suggest that most shortening along the frontal part of the thrust belt occurred between the mid-Campanian to Ypresian (∼75-52 Ma), indicating a shortening rate of ∼5.6 mm/y. Extensional orogenic collapse began during the middle Eocene.
Keywords/Search Tags:Thrust belt, Foreland basin, Eocene, Evolution, System
Related items