Font Size: a A A

Characterizing the southeast Caribbean-South American plate boundary at 64°W

Posted on:2008-03-12Degree:Ph.DType:Dissertation
University:Rice UniversityCandidate:Clark, Stephen AnthonyFull Text:PDF
GTID:1440390005450732Subject:Geophysics
Abstract/Summary:
The crustal and lithospheric structure of the northern South America plate boundary with the southeast Caribbean has been the focus of many studies. In this region, westward subduction of (Atlantic) oceanic South America transitions to east-west transform between continental South America and the Caribbean plate. Previous models invoke a poorly-constrained component of north-south convergence between the Caribbean and continental South America, predicting that the westward subduction transitions to northwest-dipping subduction beneath the Serrania del Interior. These models predict that continental crust extends north of the Venezuela coast beneath the Leeward Antilles remnant arc islands, and that the Leeward Antilles are accreting onto South America.; The results presented in this dissertation determine instead that the dextral strike-slip system along the Venezuelan coast cuts near-vertically through the crust and offsets the Moho. The strike-slip system fundamentally defines the plate boundary, deriving from a shear tear through the entire lithosphere that is actively propagating north of the Paria peninsula. This shear tear detaches subducting oceanic crust from buoyant continental crust along the weakened, former passive margin. Thrust faults flanking the strike-slip system to the north and south dip systematically toward the plate boundary. These faults have been previously interpreted as delineating a 300 km-wide diffuse plate boundary zone, caused by oblique convergence partitioned into orthogonal thrust and strike-slip displacements. Instead, these faults are driven largely by vertical rather than horizontal tectonics, and are the result of the geodynamic response to the shear tear.
Keywords/Search Tags:South america, Plate boundary, Caribbean, Shear tear, Crust
Related items