Font Size: a A A

Neutral depletion and ion acceleration in an argon helicon plasma

Posted on:2009-09-08Degree:Ph.DType:Dissertation
University:The University of Wisconsin - MadisonCandidate:Denning, C. MarkFull Text:PDF
GTID:1440390005954937Subject:Engineering
Abstract/Summary:
The effects of neutral depletion in an argon helicon plasma are investigated. High radiofrequency (RF) power is used (up to 3 kW) to produce helicon plasmas in a static magnetic field that can be configured in a flat or nozzle profile, with magnetic field strengths up to 1.04 kG in the antenna source region with a 1.5 kG nozzle peak. Microwave (105 GHz) interferometry is used to determine the line-averaged electron density (ne). The comparison of excited state populations of Ar I and Ar II with two different collisional-radiative (CR) models provides a non-invasive technique to measure the line-averaged electron temperature (Te) and neutral density (nn). Te is determined using the Atomic Data and Analysis Structure CR model, while n n is determined using a CR model originally developed by J. Vlcek. Measurement of the strong 488 nm Ar II line provides an indication of the plasma density np where interferometer access is limited. The axial ion velocity and temperature is measured through tunable diode laser-induced fluorescence (LIF). Observations indicate a collisional region of weak neutral depletion upstream of the antenna where increasing RF power leads to increased electron density (up to ne = 1.6 x 1013 cm-3) while Te remains essentially constant and low (1.7 to 2.0 eV). The collisionless downstream region exhibits profound neutral depletion (maximum 92% line-averaged ionization), where Te rises linearly with increasing RF power (4.9 eV at 3 kW) and ne remains constrained (below 6.5 x 1012 cm-3). The closed upstream region exhibits a uniform pressure profile along the axis of the experiment, indicating a pressure balance between the plasma source and a weakly-ionized region dominated by neutral particles. In contrast, a pressure gradient is observed in the downstream region extending to the downstream turbopump. The spatial extent of the pressure gradient region extends farther upstream as depletion levels rise. Plasma flow is accelerated (up to Mach 0.24) due to an axial pressure gradient with reduced collisional drag from neutral depletion. An inverse relationship between the axial ion velocity and the gas flow rate is observed through LIF.
Keywords/Search Tags:Neutral depletion, Plasma, Helicon
Related items