| Lead Bismuth Eutectic (LBE) has been proposed for use in programs for accelerator-based and reactor-based transmutation of nuclear waste. LBE is a leading candidate material as a spallation target (in accelerator-based transmutation) and an option for the sub-critical blanket coolant. The corrosion by LBE of annealed and cold-rolled 316L stainless steels, and the modified austenitic stainless steel alloy D9, has been studied using Scanning Electron Microscopy (SEM), Electron Probe Micro Analysis (EPMA), and X-ray Photoelectron Spectroscopy (XPS). Exposed and unexposed samples have been compared and the differences studied. Small amounts of surface contamination are present on the samples and have been removed by ion-beam sputtering. The unexposed samples reveal typical stainless steel characteristics: a chromium oxide passivation surface layer and metallic iron and nickel. The exposed samples show protective iron oxide and chromium oxide growths on the surface. Oxygen takes many forms on the exposed samples, including oxides of iron and chromium, carbonates, and organic acids from subsequent handling after exposure to LBE. Different types of surface preparation have lead to considerably different modes of corrosion. The cold-rold samples were resistant to thick oxide growth, having only a thin (< 1 mum), dense chromium-rich oxide. The annealed 316L and D9 samples developed thick, bi-layered oxides, the inner layer consisting of chromium-rich oxides (likely spinel) and the outer layer consisting mostly of iron oxides. The cold-rolled samples were able to maintain a thin chromium oxide layer because of the surface work performed on it, as ample diffusion pathways provided an adequate supply of chromium atoms. The annealed samples grew thick oxides because iron was the primary diffusant, as there are fewer fast-diffusion pathways and therefore an amount of chromium insufficient to maintain a chromium based oxide. Even the thick oxide, however, can prolong the life of a steel in LBE, provided proper oxygen control. The mechanisms responsible for the differences in the oxidation behaviors are discussed. |