Font Size: a A A

Structural characterization of hard materials by transmission electron microscopy (TEM): Diamond-Silicon Carbide composites and Yttria-stabilized Zirconia

Posted on:2009-04-08Degree:Ph.DType:Dissertation
University:Stanford UniversityCandidate:Park, Joon SeokFull Text:PDF
GTID:1441390005954312Subject:Engineering
Abstract/Summary:PDF Full Text Request
Diamond-Silicon Carbide (SiC) composites are excellent heat spreaders for high performance microprocessors, owing to the unparalleled thermal conductivity of the former component. Such a combination is obtained by the infiltration of liquid silicon in a synthetic diamond compact, where a rigid SiC matrix forms by the reaction between the raw materials. As well as the outstanding thermal properties, this engineered compound also retains the extreme hardness of the artificial gem. This makes it difficult to perform structural analysis by transmission electron microscopy (TEM), for it is not possible to produce thin foils out of this solid by conventional polishing methods. For the first time, a dual-beam focused ion beam (FIB) instrument successfully allowed site-specific preparation of electron-transparent specimens by the lift-out technique.;Subsequent TEM studies revealed that the highest concentration of structural defects occurs in the vicinity of the diamond-SiC interfaces, which are believed to act as the major barriers to the transport of thermal energy. Diffraction contrast analyses showed that the majority of the defects in diamond are isolated perfect screw or 60° dislocations. On the other hand, SiC grains contain partial dislocations and a variety of imperfections such as microtwins, stacking faults and planar defects that are conjectured to consist of antiphase (or inversion) boundaries. Clusters of nanocrystalline SiC were also observed at the diamond-SiC boundaries, and a specific heteroepitaxial orientation relationship was discovered for all cubic SiC that grows on diamond {111} facets.;Yttria-stabilized Zirconia (YSZ) is the most common electrolyte material for solid oxide fuel cell (SOFC) applications. It is an ionic conductor in which charge transfer is achieved by the transport of oxygen ions (O 2-). Like the diamond composite above, it is hard and brittle, and difficult to make into electron transparent TEM samples. Provided an effective supply of the "fuel" (oxygen and hydrogen gas), the performance of an SOFC device is primarily limited by the Ohmic resistance of the electrolyte and the electrochemical reaction kinetics at the electrode/electrolyte interfaces. While the former constraint may be substantially diminished by reducing the electrolyte's physical dimension into nanoscale thin films, the incorporation of oxygen ions into YSZ from the cathode side remains a relatively sluggish process. In order to study how structural modifications influence the effectiveness of the oxygen transfer at the cathode/YSZ boundary, ion implantation at different energies and doses was performed on the electrolyte, prior to the deposition of platinum (Pt) electrodes.;Xenon ions (Xe+) were used as the implant species, and the irradiation was done on atomic layer deposited (ALD) YSZ films and monocrystalline YSZ (001) substrates. From direct electrochemical measurements on fuel cell structures made on the ALD layers, an improvement by a factor of two was witnessed in the peak power density with relatively low implantation dose (10 13 cm-2) as compared to no irradiation. However the fuel cell properties worsened significantly with elevated dosage. Cross sectional TEM images of xenon implanted YSZ single crystals demonstrated the evidence of considerable defect accumulation (dislocation loops and extended dislocation lines) at 1015 and 1016 cm-2 doses. It is speculated that the bombardment with a relatively low concentration of xenon generates an optimum density of structural defects in the electrolyte that facilitate the incorporation or diffusion of O2- ions, whereas at higher radiation fluences the associated buildup of the imperfections or the implanted elements themselves may act as impediments to the anion transfer and conduction.
Keywords/Search Tags:TEM, Diamond, Structural, YSZ, Sic, Electron, Ions
PDF Full Text Request
Related items