Font Size: a A A

Le vieillissement chronologique de Schizosaccharomyces pombe: Implication des voies de detection du glucose

Posted on:2010-04-11Degree:Ph.DType:Dissertation
University:Universite de Montreal (Canada)Candidate:Antoine, Emile RouxFull Text:PDF
GTID:1444390002476695Subject:Chemistry
Abstract/Summary:
The first increase in life span due to man's intervention was obtained with rats subjected to a diet reduced in calorie intake. Later, this phenomenon was repeated with many other species and referred as diet restriction or calorie restriction. The development of modern Molecular Biology approaches and the use of simple model organisms demonstrated that the rate of aging was regulated by genetic traits. Indeed, several cellular mechanisms were identified as responsible for the control of aging. These regulatory pathways appear to be conserved throughout species, from yeast to multicellular organisms like nematode, fly and mice, thus suggesting the existence of a universal program of aging.;Research in the molecular mechanisms of aging propose holds the promise to bring precious clues as to this mysterious processes affecting all living creatures, and paves the way to unravel the underlying causes of many human diseases. Indeed, aging is the first cause of numerous late-onset pathologies including cancers, cardiovascular diseases or neurodegenerative diseases like Alzheimer and Parkinson syndromes.;Keywords: aging, longevity, life span, yeast, schizosaccharomyces pombe, stationary phase, pka, sck2;Yeast proved several times to be a powerful and reliable model for discovering genes involved in the regulation of aging. My study consisted in developing Schizosaccharomyces pombe (also called fission yeast) as a new unicellular model to study aging. The first step of my work was to show that pathways of nutrient detection through kinases involving Pka1 and Sck2 control chronological aging in S. pombe, as it was previously demonstrated in Saccharomyces cerevisiae. This first work validated the use of fission yeast for the study of aging. Subsequently, we analysed in more detail the pro-aging effect of glucose focusing on the role of its signalling through the G-protein Gpa2-coupled membrane receptor Git3, which acts upstream of Pka1. The loss of the glucose signal due to deletion of Git3 mimics partially the effect of increasing longevity by reducing glucose in the medium. Moreover, detrimental effects of glucose signal are maintained in absence of sugar metabolism following loss of hexokinases, the first enzymes of glycolysis. Together, these results suggest that the pro-aging effects of glucose signalling are predominant over those due to metabolism of this sugar. Moreover, both obliteration of this signalling pathway and decrease of glucose availability extend life span, and correlate with an increase in stress resistance, in mitochondrial activity and a lower production of free radicals. Finally, screening a cDNA-overexpression library allowed us to identify several genes candidates responsible for the effects on longevity downstream of Git3/Pka1.
Keywords/Search Tags:Schizosaccharomyces pombe, Glucose, Life span, Aging, First
Related items