Font Size: a A A

Heparin-binding peptide amphiphile supramolecular architectures as platforms for angiogenesis and drug delivery

Posted on:2010-10-25Degree:Ph.DType:Dissertation
University:Northwestern UniversityCandidate:Chow, Lesleyann WFull Text:PDF
GTID:1444390002983560Subject:Nanoscience
Abstract/Summary:PDF Full Text Request
A fascinating phenomenon in nature is the self-assembly of molecules into a functional, hierarchical structure. In the past decade, the Stupp Laboratory has developed several classes of self-assembling biomaterials, one of which is the synthetic peptide amphiphile (PA). Self-assembling PAs are attractive and versatile biomolecules that can be customized for specific applications in regenerative medicine. In particular, a heparin-binding peptide amphiphile (HBPA) containing a specific heparin-binding peptide sequence was used here to induce angiogenesis and serve as a delivery vehicle for growth factors and small hydrophobic molecules. Throughout this dissertation, the HBPA/heparin system is used in different architectures for a variety of regenerative medicine applications. In one aspect of this work, hybrid scaffolds made from HBPA/heparin gelled on a poly(L-lactic acid) (PLLA) fiber mesh were used to promote angiogenesis to facilitate pancreatic islet transplantation for the treatment of type 1 diabetes. Delivery of growth factors with HBPA/PLLA scafflolds increased vessel density in vivo and correlated with improved transplant outcomes in a streptozotocin-induced diabetic mouse model. Soluble HBPA nanofiber architectures were also useful for islet transplantation applications. These nanofibers were used at concentrations below gelation to deliver growth factors into the dense islet cell aggregate, promoting cell survival and angiogenesis in vitro. The nanostructures infiltrated the islets and promoted the retention of heparin and growth factors within the islet. Another interesting growth factor release system discussed here is the HBPA membrane structure. HBPA was found to self-assemble with hyaluronic acid, a large biopolymer found in the body, into macroscopic, hierarchically-ordered membranes. Heparin was incorporated into these membranes and affected the membrane's mechanical properties and growth factor release. Human mesenchymal stem cells were also shown to attach and maintain viability on these membranes. Finally, HBPA nanofibers were used to control the release of small hydrophobic molecules. HBPA nanofiber gels released nitric oxide (NO) to inhibit neointimal hyperplasia, a major cause for vascular graft or stent failure. HBPA/heparin gels were shown to prolong the release of NO generated from NO donors, significantly reducing neointimal hyperplasia in injured carotid arteries in vivo.
Keywords/Search Tags:Heparin-binding peptide, Peptide amphiphile, HBPA, Angiogenesis, Architectures, Growth factors, Release
PDF Full Text Request
Related items