Font Size: a A A

Curious Fluid Flows: From Complex Fluid Breakup to Helium Wetting

Posted on:2013-07-01Degree:Ph.DType:Dissertation
University:University of California, IrvineCandidate:Huisman, Fawn MitsuFull Text:PDF
GTID:1450390008484665Subject:Physics
Abstract/Summary:
This work encompasses three projects; pinch-off dynamics in non-Newtonian fluids; helium wetting on alkali metals; and the investigation of quartz tuning forks as cryogenic pressure transducers.;Chapter 1 discusses the breakup of a non-Newtonian yield stress fluid bridge. We measured the minimum neck radius, hmin, as a function of time and fit it to a power law with exponent n 1. We then compare n1 to exponent n2, obtained from a rotational rheometer using a Herschel-Bulkley model. We confirm n1=n2 for the widest variety of non-Newtonian fluids to date. When these fluids are diluted with a Newtonian fluid n1 does not equal n2. No current models predict that behavior, identifying a new class of fluid breakup.;Chapter 2 presents the first chemical potential-temperature phase diagram of helium on lithium, sodium and gold, using a novel pressure measurement system. The growth and superfluid transition of a helium film on these substrates is measured via an oscillator for isotherms (fixed temperature, varying amount of helium gas), and quenches (fixed amount of helium gas, varying temperature). The chemical potential-temperature plot is similar for gold, lithium and sodium despite the large difference in the substrate binding energies. No signs of a 2-D liquid-vapor transition were seen.;Chapter 3 discusses the creation of a 32.768 kHz quartz tuning fork in situ pressure transducer. Tuning forks are used to measure pressure at room temperature, but no work addresses their potential as cryogenic pressure transducers. We mapped out the behavior of a tuning fork as a function of pressure at 298, 7.0, 2.5, 1.6, 1.0 and 0.7 K by measuring the quality factor. The fork is sensitive to pressures above 0.1 mTorr, limiting its use as a pressure gauge at 0.6 K and below. The experimental curves were compared to a theoretical Q(P, T) function that was refined using the 298 K data. At cryogenic temperatures the formula breaks down in the viscous region and becomes inaccurate. The qualitative shape of the theory, but not its quantitative values, matches the data. The discrepancy between the experimental and theoretical Q values appears to be due to unaccounted for dissipation.
Keywords/Search Tags:Helium, Fluid, Breakup
Related items