Font Size: a A A

Developing molecular tools for Chlamydomonas reinhardtii

Posted on:2013-09-14Degree:Ph.DType:Dissertation
University:The University of TulsaCandidate:Noor-Mohammadi, SamanehFull Text:PDF
GTID:1450390008982535Subject:Engineering
Abstract/Summary:
Microalgae have garnered increasing interest over the years for their ability to produce compounds ranging from biofuels to neutraceuticals. A main focus of researchers has been to use microalgae as a natural bioreactor for the production of valuable and complex compounds. Recombinant protein expression in the chloroplasts of green algae has recently become more routine; however, the heterologous expression of multiple proteins or complete biosynthetic pathways remains a significant challenge. To take full advantage of these organisms' natural abilities, sophisticated molecular tools are needed to be able to introduce and functionally express multiple gene biosynthetic pathways in its genome.;To achieve the above objective, we have sought to establish a method to construct, integrate and express multigene operons in the chloroplast and nuclear genome of the model microalgae Chlamydomonas reinhardtii. Here we show that a modified DNA Assembler approach can be used to rapidly assemble multiple-gene biosynthetic pathways in yeast and then integrate these assembled pathways at a site-specific location in the chloroplast, or by random integration in the nuclear genome of C. reinhardtii. As a proof of concept, this method was used to successfully integrate and functionally express up to three reporter proteins (AphA6, AadA, and GFP) in the chloroplast of C. reinhardtii and up to three reporter proteins (Ble, AphVIII, and GFP) in its nuclear genome. An analysis of the relative gene expression of the engineered strains showed significant differences in the mRNA expression levels of the reporter genes and thus highlights the importance of proper promoter/untranslated-region selection when constructing a target pathway.;In addition, this work focuses on expressing the cofactor regeneration enzyme phosphite dehydrogenase (PTDH) in the chloroplast and nuclear genomes of C. reinhardtii. The PTDH enzyme converts phosphite into phosphate and NAD(P)+ into NAD(P)H. The reduced nicotinamide cofactor NAD(P)H plays a pivotal role in many biochemical oxidation and reduction reactions, thus this enzyme would allow regeneration of NAD(P)H in a microalgae strain over-expressing a NAD(P)H-dependent oxidoreductase. A phosphite dehydrogenase gene was introduced into the chloroplast genome (codon optimized) and nuclear genome of C. reinhardtii by biolistic transformation and electroporation in separate events, respectively. Successful expression of the heterologous protein was confirmed by transcript analysis and protein analysis. In conclusion, this new method represents a useful genetic tool in the construction and integration of complex biochemical pathways into the chloroplast or nuclear genome of microalgae, and this should aid current efforts to engineer algae for recombinant protein expression, biofuels production and production of other desirable natural products.
Keywords/Search Tags:Reinhardtii, Expression, Nuclear genome, Protein, Microalgae
Related items