Font Size: a A A

Growth and Characterization of (211)B Cadmium Telluride Buffer Layer Grown by Metal-organic Vapor Phase Epitaxy on Nanopatterned Silicon for Mercury Cadmium Telluride Based Infrared Detector Applications

Posted on:2013-08-07Degree:Ph.DType:Dissertation
University:Rensselaer Polytechnic InstituteCandidate:Shintri, Shashidhar SFull Text:PDF
GTID:1451390008483037Subject:Engineering
Abstract/Summary:PDF Full Text Request
Mercury cadmium telluride (MCT or Hg1-xCdxTe) grown by molecular beam epitaxy (MBE) is presently the material of choice for fabricating infrared (IR) detectors used in night vision based military applications. The focus of MCT epitaxy has gradually shifted since the last decade to using Si as the starting substrate since it offers several advantages. But the ∼19 % lattice mismatch between MCT and Si generates lots of crystal defects some of which degrade the performance of MCT devices. Hence thick CdTe films are used as buffer layers on Si to accommodate the defects. However, growth of high quality single crystal CdTe on Si is challenging and to date, the best MBE CdTe/Si reportedly has defects in the mid-105 cm -2 range. There is a critical need to reduce the defect levels by at least another order of magnitude, which is the main motivation behind the present work. The use of alternate growth technique called metal-organic vapor phase epitaxy (MOVPE) offers some advantages over MBE and in this work MOVPE has been employed to grow the various epitaxial films.;In the first part of this work, conditions for obtaining high quality (211)B CdTe epitaxy on (211)Si were achieved, which also involved studying the effect of having additional intermediate buffer layers such as Ge and ZnTe and incorporation of in-situ thermal cyclic annealing (TCA) to reduce the dislocation density. A critical problem of Si cross-contamination due to 'memory effect' of different reactant species was minimized by introducing tertiarybutylArsine (TBAs) which resulted in As-passivation of (211)Si. The best 8-10 µm thick CdTe films on blanket (non-patterned) Si had dislocations around 3×105 cm-2, which are the best reported by MOVPE till date and comparable to the highest quality films available by MBE.;In the second part of the work, nanopatterned (211)Si was used to study the effect of patterning on the crystal quality of epitaxial CdTe. In one such study, patterning of ∼20 nm holes in SiO2/Ge/(211)Si was achieved by block co-polymer (BCP) lithography. Conditions for selective CdTe epitaxy was achieved and results showed different defect propagation mechanism at the patterned interface compared to the films grown on blanket Si. In another study, patterning of ∼360 nm holes in SiO2/(211)Si was done by molecular transfer lithography (MxL). Conditions for selective Ge and CdTe epitaxy were achieved which was the most challenging part of this work. Thin CdTe films were characterized to check the effect of nanopatterning. Certain results invariably showed that CdTe grown on nanopatterned substrates demonstrated promise of defect reduction and blocking close to the growth interface. But presently, nanopatterning also offers some serious challenges such as uniformity of patterns and substrate cleaning prior to growth for successful implementation of epitaxy on very large areas. Such factors resulted in degradation of overall crystal quality and will be discussed in this work. This is the first successful demonstration of selective (211)B CdTe epitaxy on Si by MOVPE using some of the relatively novel and promising nanopatterning techniques.
Keywords/Search Tags:Epitaxy, Cadmium telluride, Grown, Cdte, MCT, MOVPE, MBE, Growth
PDF Full Text Request
Related items