Font Size: a A A

Directional solidification of large cross-section nickel-base superalloy castings via liquid-metal cooling

Posted on:2006-09-17Degree:Ph.DType:Dissertation
University:University of MichiganCandidate:Elliott, Andrew JFull Text:PDF
GTID:1451390008962194Subject:Engineering
Abstract/Summary:
The drive for higher efficiency in very large industrial gas turbines (IGTs) used in power generation applications has led to the need for directional solidification of large cross-section components, such as turbine blades, used in the hot gas path sections of the IGTs. The Bridgman directional solidification technique, which is currently used to produce these components, has been optimized for much smaller aero-engine components. The scale-up of this technique to produce large parts has resulted in numerous problems, and consequently low casting yield, which can all be related to the limited cooling capability of the Bridgman process.; In this dissertation, a higher cooling efficiency process, liquid-metal cooling (LMC) using Sn as the cooling medium, has been evaluated for improved capability to cast large cross-section components. A series of castings were made for direct comparison using both the conventional Bridgman and the high thermal gradient LMC processes. Casting conditions were selected to simulate the state of the art for the Bridgman method and to assess the limits of casting with the less familiar LMC method. The experiments were evaluated through thermocouple analyses of casting conditions and post-casting analyses of grain defects, microstructural features, and mechanical behavior. Additionally, a finite element model of the solidification process was developed to further elucidate casting conditions. The casting parameters and elements of the LMC process that had the greatest influence on casting conditions were determined.; Results indicated that the LMC process is capable of significantly enhancing cooling efficiency during directional solidification of large cross-section components. The enhanced cooling allowed much faster solidification withdrawal rates and resulted in substantially refined cast microstructure. The LMC process eliminated freckle-type defects in all cases and considerably reduced other casting defects under optimal conditions. It also was determined that the location of the solidification front during the LMC process is a crucial parameter that must be controlled to produce a high quality casting. Additionally, a floating thermal baffle used with the LMC-Sn process was established as an indispensable element of the LMC process.
Keywords/Search Tags:LMC process, Large, Casting, Directional solidification, Cooling, Used
Related items