Font Size: a A A

Amorphous alumina oxidation protective coatings for Zircaloy based on a compositional gradient layer system

Posted on:2005-02-24Degree:Ph.DType:Dissertation
University:University of FloridaCandidate:Park, Sang TaeFull Text:PDF
GTID:1451390008987237Subject:Engineering
Abstract/Summary:PDF Full Text Request
Waterside corrosion of the Zircaloy cladding encasing the uranium oxide pellets is one of the primary factors limiting high "burn up" of nuclear fuel in pressurized water reactors (PWRs). High "burn up" can significantly impact plant safety and economics.; Amorphous aluminum oxide coatings with aluminum-based compositional gradient layers (CGLs) were fabricated to develop ceramic coating corrosion protection systems for Zircaloy. Aluminum films were deposited on Zircaloy substrates by electron-beam evaporation, and two-step heat treatments were performed at near the melting temperature of aluminum. Amorphous alumina coatings by rf magnetron sputtering were overcoated on the CGL structures. Morphological and compositional studies were completed using field emission scanning electron microscopy (FE SEM), energy dispersive x-ray analysis (EDX), and auger electron spectroscopy (AES). The AES depth profiles of the annealed coatings showed that gradient compositions of Al, Zr, and O were obtained. Glancing angle x-ray diffraction (GAXRD) analysis showed that a variety of intermetallic and oxide phases (such as Al3Zr, Al2Zr3, Al2O3, ZrO2 and Zr3O) were formed in the coatings during processing. The intermetallic layers improved the adhesion property of the alumina overcoating to Zircaloy substrate, and functioned as oxidation resistant layers.; In spite of the successful construction of the compositional gradient layer system with a good adhesion and thermal stability, and the report about the stability of pure alumina and amorphous ceramics in hydrothermal conditions, the amorphous alumina coatings in our study were not stable under nuclear reactor conditions of subcritical water at 350°C and 20.1 MPa (3000 psi).; We investigated the behavior of amorphous alumina thin films deposited on Zircaloy substrates in the near-supercritical water. When the coatings were exposed to the subcritical conditions, hydrothermally grown well-faceted crystallite formation was observed. Surface morphology and composition were characterized by FE SEM, AES and EDX. The crystallites were identified to be aluminum hydroxide, boehmite (gamma-AlOOH) by XRD spectra, peak shift in x-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) images. We hypothesized the mechanism of the boehmite formation as the dissolution of amorphous alumina and the reprecipitation of boehmite during the cooling process.
Keywords/Search Tags:Amorphous alumina, Zircaloy, Compositional gradient, Coatings
PDF Full Text Request
Related items