Font Size: a A A

Development of ion-plated aluminide diffusion coatings for thermal cyclic oxidation and hot corrosion protection of a nickel-based superalloy and a stainless steel

Posted on:2004-03-14Degree:Ph.DType:Dissertation
University:University of Toronto (Canada)Candidate:Elsawy, Abdel RaoufFull Text:PDF
GTID:1451390011456034Subject:Engineering
Abstract/Summary:PDF Full Text Request
This project was carried out at the University of Toronto and Cametoid Ltd of Whitby, Ontario. Ohno continuous casting; a novel net shape casting technique, was used to generate, Al-Y, Al-Ce, Al-La, and Al-Si-Y, in form of 1.6 to 1.7 mm diameter alloy wires. These alloy wires exhibited suitable properties for use as feed materials to an Ion Vapor Deposition facility. The deposition parameters were optimized to provide coatings with a compact and cohesive columnar structure with reduced porosity and diffusion barriers that were essential to ensure the success of the diffusion process in the subsequent stage. Solid-state diffusion heat treatment processes were developed in order to form the stable aluminide phases, AlNi and FeAl, on IN738 and S310 substrates, respectively.; Experiments simulating the coating service conditions and environments encountered during the prospective aerospace and fuel cell applications were conducted to evaluate the performance of each aluminide coating developed during this study. Thermal cyclic oxidation and molten sulfate corrosion studies were performed on coated IN738 pins at 1050°C and 900°C, respectively, simulating the service environment of turbine engine blades and other hot section components. Molten carbonate corrosion behavior was investigated for coated S310 coupons that were immersed in, or covered with a thin film of molten carbonate, at 650°C, in air plus 30%CO2, to simulate the operating conditions of the cathode-side separator plates of molten carbonate fuel cells.; The behavior of the reactive elements, yttrium, cerium, lanthanum, and silicon in enhancing the adhesion of the protective aluminum oxide scale was determined by weight variation experiments, structural examination and compositional analysis. The influence of the base material elements, nickel, chromium, and iron, on the formation of protective oxides was investigated. All coatings were found to provide significant improvement for thermal cyclic oxidation and hot corrosion protection. For protection of IN738, Al-La coatings provided the greatest protection during oxidative thermal cycling, whereas Al-Ce coatings were found to be the most effective for protection against corrosive molten sulfate environments in aerospace applications. For protection of S310 against the corrosive environments of molten carbonate fuel cells, the effectiveness of the aluminide coatings were in the sequence, from the most to the least effective, Al-La, Al-Ce, Al-Y, and Al-Si-Y Mechanisms for Lanthanum and cerium protective behavior in high temperature aluminide diffusion coatings were suggested from the results of this study combined with literature information.
Keywords/Search Tags:Coatings, Thermal cyclic oxidation, Aluminide, Diffusion, Protection, Corrosion, Molten carbonate
PDF Full Text Request
Related items