Font Size: a A A

Investigation on cirrus clouds by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data

Posted on:2012-02-25Degree:Ph.DType:Dissertation
University:University of Alaska FairbanksCandidate:Zhu, JiangFull Text:PDF
GTID:1460390011465616Subject:Atmospheric Sciences
Abstract/Summary:
Understanding and describing the role of clouds in the climate system need intensive and extensive research on cloud properties. The albedo and greenhouse effects of clouds and their relations with the physical properties of clouds are analyzed. Cloud-top height and ice water content are key factors in impacting the longwave and shortwave radiation, respectively. Lidar and infrared radiometer measurement technologies are introduced. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) level 1 Lidar profile, level 2 cloud layer, and level 2 Lidar/IIR track products are briefly reviewed. The algorithms for identification of cirrus clouds, Linear Depolarization Ratio (LDR), and effective diameter are presented. An average LDR profile is calculated by using the sum of total attenuated backscattering profiles and the sum of perpendicular attenuated backscattering profiles. A weight-average method is applied to calculate the average LDR. A split-window method is applied to estimate the effective diameters of clouds. A set of bulk ice crystal models and a radiative transfer model are applied to produce a look-up table that includes the radiative transfer simulation results. The macro-physical properties of cirrus clouds are analyzed. The frequency of occurrence of cirrus clouds varies with latitude, and strongly relates to the atmospheric circulation. Cirrus clouds are few in high-pressure zones and abundant where seasonal monsoonal circulation occurs. Cloud-top height decreases with increasing latitude. Cloud-top temperature is lower in the tropical regions than in the midlatutude and the polar regions. The measured cloud thickness shows a great diurnal variation.
Keywords/Search Tags:Clouds, Lidar and infrared
Related items