Font Size: a A A

The effects of ternary alloying additions on solute-drag creep in aluminum-magnesium alloys

Posted on:2004-02-26Degree:Ph.DType:Dissertation
University:The University of Texas at AustinCandidate:Qiao, JunFull Text:PDF
GTID:1461390011971725Subject:Engineering
Abstract/Summary:
Effects of ternary additions of Zn, Fe, and Cu on solute-drag creep and ductility in Al-Mg alloys are studied. The materials studied are, in wt. pct. Al-2Mg-5Zn, Al-3Mg-5Zn, Al-4Mg-5Zn, Al-3Mg-0.11Fe, Al-3Mg-0.27Fe, Al-3Mg-0.40Fe, Al-3Mg-0.50Cu, Al-3Mg-1.02Cu, Al-3Mg-1.52Cu, and Al-3Mg-2.15Cu. Experimental data show that ternary Zn additions do not have an adverse effect on solute-drag creep in Al-Mg alloys, but increase the sensitivity of stress exponent, n, to Mg content. Transitions to power-law breakdown in the Al-xMg-5Zn materials are discussed. Ternary Fe and Cu additions increases n during solute-drag creep. Ductilities of over 100% are consistently achieved in the Al-xMg-5Zn and Al-3Mg-xFe materials. Age hardenability during natural aging and simulated paint-bake cycle are studied for the Al-xMg-5Zn Chid Al-3Mg-xCu materials. Zn creates a significant paint-bake response, while the effect of Cu is small for a simulated paint-bake cycle.
Keywords/Search Tags:Solute-drag creep, Ternary, Additions, Materials
Related items