Font Size: a A A

A study of interfacial heat transfer and process parameters in squeeze casting and low pressure permanent mold casting

Posted on:2002-05-28Degree:D.EngType:Dissertation
University:University of Michigan College of Engineering Graduate Professional ProgramsCandidate:Krishna, PrasadFull Text:PDF
GTID:1461390011992968Subject:Engineering
Abstract/Summary:
With the emerging demand for energy efficient and environment-friendly automobiles, cast aluminum alloys are increasingly being used in their manufacture. In this context, two permanent mold casting processes, namely, Squeeze Cast Permanent Mold and Low Pressure Permanent Mold (LPPM) have become very popular in the production of high integrity shape-cast aluminum components. However, many industries are yet to benefit from the full potential of these processes due to limited understanding of the effect of process parameters on casting quality and the necessary boundary conditions for computer modeling and simulation so as to minimize costly field trials. This dissertation attempts to address some of these concerns facing today's foundry industry.; An experimental investigation of the Indirect Squeeze Casting Process was conducted by pouring molten Al-7Si-0.3Mg (A356) alloy into a specially designed and instrumented mold, mounted on a horizontal clamped-vertical shot squeeze caster (HVSC). Temperature measurements close to the metal/mold interface were made and compared with the results of the numerical simulation of heat flow during solidification and cooling of castings. The Heat Transfer Coefficient (HTC), a critical parameter essential for any solidification simulation, was estimated based on the simulation that gave the best fit to the experimental temperature data. During the solidification process, the HTC is relatively uniform over the entire casting and on reaching a critical solidification pressure, the HTC is close to 4500 W/m2 K. The work has also provided a correlation of Secondary Dendrite Arm Spacing (SDAS) with cooling rate for a modified A356 alloy.; Low Pressure Permanent Mold Casting experiments were conducted by pouring a nearly identical aluminum alloy into an instrumented, coated mold mounted on a low pressure casting machine. The pressure levels, along with the time required to achieve complete filling, were microprocessor controlled in the casting machine. The HTC evaluation and SDAS-Cooling Rate Correlation were made in a similar manner to the Squeeze Casting study. A novel approach to estimating the HTC, accounting for the temporal and spatial temperature and thermal property variations, is presented. The maximum and minimum values of the HTC in this case were close to 2000 W/m2 K with no air gap and 400 W/m2 K with an air gap formation. The influences of air gap formation and mold coatings in controlling interfacial heat transfer were also modeled.; It is expected that the HTCs and SDAS-Cooling Rate Correlations for the two casting processes will assist foundry engineers in deriving maximum benefits from each process.
Keywords/Search Tags:Casting, Low pressure permanent mold, Process, Heat transfer, HTC
Related items