| Objective:Using liquid chromatography-mass spectrometry technique to find differential metabolites related to shangrexiahan syndrome in type 2 diabetes,and to identify biomarkers for diabetes Analyze the metabolic pathways that may be involvedMethods:Take type 2 diabetes in shangrexiahan syndrome group(n=25),healthy control group(n=30)in the blood and the blood collection tube containing anticoagulant,centrifuge and put into ep In the tube,after adding organic solvent and protein precipitation,the original data was obtained by entering the liquid chromatography mass spectrometer,and the data was imported into the Progenesis Q1 software.After peak alignment,peak extraction and normalization,SIMCA-P14.1 software was used for diversification.Statistical analysis of variables,mainly through supervised orthogonal partial least squares,to establish a model,to obtain the difference between the type 2 diabetes shangrexiahan syndrome group and the healthy control group metabolites,looking for specific biomarkers,through the MDB,KEGG and other databases,the pathological enrichment of differential metabolites,to identify the metabolic pathways involved in differential metabolites,thereby gaining the possibility of participating in type 2 diabetes Metabolic shangrexiahan syndrome pathways in the pathogenesis of the diseaseResults:1.In terms of gender and body mass index,the two groups had p>0.05,and there was no statistical difference.There was a statistical difference between the two groups at p<0.05 in age.In terms of clinical biochemical indicators,total cholesterol,triglyceride,serum creatinine,and aspartate aminotransferase were compared between the two groups,p>0.05,and the difference was not statistically significant.Fasting blood glucose,alanine aminotransferase,and urea were compared between the two groups,p<0.05,and there was statistical difference between the two groups.2.35 substances p<0.05,vip>1,respectively ceramide(d18:1/24:1(15Z)),lysophosphatidylcholine(16:0/14:0),ethanolamine(22:6(4Z),7Z,10Z,13Z,16Z,19Z)/16:0),ethanolamine(20:4(8Z,11Z,14Z,17Z)/16:0),ethanol amine(18:0/18:1(11Z)),ethanolamine(18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)),ethanolamine(20:4(8Z,11Z,14Z,17Z)/18:0),pentanoyl carnitine,butyryl carnitine,propionylcarnitine,aminooctanoic acid,isoleucine,glutamic acid,lysophosphatidylcholine(18:3(9Z,12Z,15Z)),lysophosphatidylcholine(16:1(9Z)),lysophosphatidylethanolamine(18:2(9Z,12Z)/0:0),lysophosphatidyleholine(18:2(9Z,12Z)),lysophosphatidylcholine(20:4(8Z),11Z,14Z,17Z)),lysophosphatidylcholine(16:0),lysophosphatidylethanolamine(18:1(11Z)/0:0),lysophosphatidylcholine(P-16:0)?Lysophosphatidylcholine(18:1(11Z)),lysophosphatidylcholine(P-18:0),lysophosphatidylcholine(20:2(11Z,14Z)),lysophosphatidylcholine(18:0),lysophosphatidylcholine(0-18:0),lysophosphatidylcholine(20:0),ethanolamine(18:2(9Z,12Z)/18:1(11Z)),phosphatidylcholine Base(0-16:0/16:1(9Z)),Phosphatidylcholine(0-16:1(9Z)/18:2(9Z,12Z)),Phosphatidylcholine(0-16:0/18:2(9Z,12Z)),phosphatidylcholine(P-18:0/18:2(9Z,12Z))Phosphatidylcholine(P-18:0/18:l(11Z)),ethanolamine(P-18:0/18:2(9Z,12Z)),histidine;ceramide(d18:l/24:1(15Z)),ceramide(dl8:1/25:0),lysophosphatidylethanolamine(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0),phospholipid ethanolamine(22:6)(4Z,7Z,10Z,13Z,16Z,19Z)/16:0),phospholipid ethanolamine(20:4(8Z,11Z,14Z,17Z)/16:0),phospholipid ethanolamine(18:0/18:1)(11Z)),phospholipid ethanolamine(18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)),phospholipid ethanolamine(20:4(8Z,11Z,14Z,17Z)/18:0),hexyl carnitine,acetyl carnitine,13 metabolites fold change>],ceramide(dl8:l/24:l(15Z)),lysophosphatidylcholine(16:0/14:0),ethanolamine(22:6(4Z,7Z,10Z),13Z,16Z,19Z)/16:0),ethanolamine(20:4(8Z,11Z,14Z,17Z)base,butyryl carnitine,propionylcarnitine,2-aminooctanoic acid,valeryl carnitine,2-methylnicotinamide,leucine,glutamic acid,histidine/16:0),ethanolamine(18:0/18:1(11Z)),ethanolamine(18:0/22:6(4Z,7T),10Z,13Z,16Z,19Z)),ethanolamine(20:4(8Z,11Z,14Z,17Z)/18:0),pentoylcarnitine,butyrylcarnitine,propionylcanitine,aminooctanoic acid,iso Leucine,glutamic acid;22kinds of fold change<l are lysophosphatidylcholine(18:3(9Z,12Z,15Z)),lysophosphatidylcholine(16:1(9Z)),lysophosphatidylethanolamine(18:2(9Z),12Z)/0:0),lysophosphatidylcholine(18:2(9Z,12Z)),lysophosphatidylcholine(20:4(8Z,11Z,14Z,17Z)),lysophosphatidylcholine(16:0),lysophosphatidylethanolamine(18:1(1lZ)/0:0),lysophosphatidylcholine(P-16:0),lysophosphatidylcholine(18:1(11Z)),Lysophosphatidylcholine(P-18:0),lysophosphatidylcholine(20:2(11Z,14Z)),lysophosphatidylcholine(18:0),lysophosphatidylcholine(0-18:0),lysophosphatidylcholine(20:0),ethanolamine(18:2(9Z,12Z)/18:1(11Z)),phosphatidylcholine(0-16:0/16:1(9Z)),phosphatidylcholine(0-16:l(9Z)/18:2(9Z,12Z)),phosphatidyleholine(0-16:0/18:2(9Z,12Z)),phosphatidylcholine Base(P-18:0/18:2(9Z,12Z)),phosphatidylcholine(P-18:0/18:l(11Z)),ethanolamine(P-18:0/18;2(9Z)5 12Z))5histidine.Among them,ethanolamine(22:6(4Z?7Z,10Z,13Z,16Z,19Z)/16:0)fold change>2,lysophosphatidylcholine(18:2(9Z,12Z))fold change<0.5.The pathways enriched are glycerolipid metabolism,aminoacyl-tRNA biosynthesis,histidine metabolism,glutamine and glutamate metabolism,glycosylphosphatidylinositol-anchored biosynthesis,alanine,aspartic acid and glutamate metabolism,sphingolipid metabolism,valerine,leucine and isoleucine biosynthesis,glutathione metabolism,arginine and proline metabolism,valerine,Leucine and isoleucine are degraded.Conclusion:1.A total of35differential metabolites were identified between the shangrex.iahan group(S group)and the healthy control group(N group)in type 2 diabetes,13 substances were up-regulated,and the differential metabolite:ceramide(d18:1/24):1(15Z)),lysophosphatidylcholine(16:0/14:0),ethanolamine(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:0),ethanolamine(20:4(8Z,11Z,14Z,17Z)/16:0),ethanolamine(18:0/18:1(11Z))5 ethanolamine(18:0/22:6(4Z5 7Z,10Z,13Z,16Z,19Z)),ethanolamine(20:4(8Z,11Z5 14Z,17Z)/18:0),pentoylcarmitine,butyiylcarnitine,propionylcarmitine,aminooctanoic acid,isoleucine,glutamic acid.22differential metabolites down-regulated,differential metabolites lysophosphatidylcholine(18:3(9Z,12Z,15Z)),lysophosphatidylcholine(16:1(9Z)),lysophosphatidylethanolamine(18:2(9Z,12Z)/0:0),lysophosphatidylcholine(18:2(9Z,12Z)),lysophosphatidylcholine(20:4(8Z,11Z,14Z,17Z)),Lysophosphatidylcholine(16:0),lysophosphatidylethanolamine(18:1(11Z)/0:0),lysophosphatidylcholine(P-16:0),lysophosphatidylcholine(18:1)(11Z)),lysophosphatidylcholine(P-18:0),lysophosphatidylcholine(20:2(11Z,14Z)),lysophosphatidylcholine(18:0),lysophosphatidylcholine(0-18:0),lysophosphatidylcholine(20:0),ethanolamine(18:2(9Z,12Z)/18:1(11Z)),phosphatidylcholine(0-16:0/16):1(9Z)),phosphatidylcholine(o-16:l(9Z)/18:2(9Z,12Z)),phosphatidylcholine(0-16:0/18:2(9Z,12Z))5phosphatidylcholine(P-18:0/18:2(9Z,12Z)),phosphatidylcholine(P-18:0/18:l(11Z)),ethanolamine(P-18:0/)18:2(9Z,12Z)),histidine,wherein the differential metabolite ethanolamine(22:6(4Z,7Z,10Z5 13Z,16Z,19Z)/16:0 and lysophosphatidylcholine(18:2(9Z,12Z))can be used as a potential biomarker for fever and cold syndrome in type2diabetes And the biological basis different from other syndromes,type 3.2 diabetes upper fever syndrome involves multiple metabolic pathways,glycerolipid metabolism,aminoacyl-tRNA biosynthesis,histidine metabolism,glutamine and glutamate Metabolism,glycosylphosphatidylinositol-anchored biosynthesis,alanine,aspartate and glutamate metabolism,sphingolipid metabolism,valerine,leucine and isoleucine biosynthesis Important metabolic pathways such as glutathione metabolism,arginine and proline metabolism,valerine,leucine and isoleucine degradation. |