Font Size: a A A

Quantum well intermixing for photonic integrated circuits

Posted on:2008-07-17Degree:Ph.DType:Thesis
University:The University of ArizonaCandidate:Sun, XiaolanFull Text:PDF
GTID:2440390005470175Subject:Engineering
Abstract/Summary:
In this thesis, several aspects of GaAsSb/AlSb multiple quantum well (MQW) heterostructures have been studied.; First, it was shown that the GaAsSb MQWs with a direct band gap near 1.5 mum at room temperature could be monolithically integrated with AlGaSb/AlSb or AlGaAsSb/AlAsSb Bragg mirrors, which can be applied to Vertical Cavity Surface Emitting Lasers (VCSELs).; Secondly, an enhanced photoluminescence from GaAsSb MQWs was reported. The photoluminescence strength increased dramatically with arsenic fraction as conjectured. The peak photoluminescence from GaAs0.31Sb 0.69 was 208 times larger than that from GaSb.; Thirdly, the strong photoluminescence from GaAsSb MQWs and the direct nature of the band gap near 1.5 mum at room temperature make the material favorable for intermixing studies. The samples were treated with ion implantation followed by rapid thermal annealing (RTA). A band gap blueshift as large as 198 nm was achieved with a modest ion dose and moderate annealing temperature. Photoluminescence strength for implanted samples generally increased with the annealing temperature. The energy blueshift was attributed to the interdiffusion of both the group III and group V sublattices.; Finally, based on the interesting properties of GaAsSb MQWs, including the direct band gap near 1.5 mum, strong photoluminescence, a wide range of wavelength (1300--1500 nm) due to ion implantation-induced quantum well intermixing (QWI), and subpicosecond spin relaxation reported by Hall et al, we proposed to explore the possibilities for ultra-fast optical switching by investigating spin dynamics in semiconductor optical amplifiers (SOAs) containing InGaAs and GaSb MQWs. For circularly polarized pump and probe waves, the numerical simulation on the modal indices showed that the difference between the effective refractive index of the TE and TM modes was quite large, on the order of 0.03, resulting in a significant phase mismatch in a traveling length larger than 28 mum. Thus the FWM conversion efficiency was exceedingly small and the FWM mechanism in SOAs used for investigation of all-optical polarization switching was strongly limited.
Keywords/Search Tags:Quantum, Gaassb mqws, Band gap, Intermixing
Related items