Font Size: a A A

Layer-by-layer assembly of nanostructured composites: Mechanics and applications

Posted on:2009-11-13Degree:Ph.DType:Thesis
University:University of MichiganCandidate:Podsiadlo, PaulFull Text:PDF
GTID:2441390005958120Subject:Engineering
Abstract/Summary:
The development of efficient methods for preparation of nanometer-sized materials and our evolving ability to manipulate the nanoscale objects have brought about a scientific and technological revolution called: nanotechnology. This revolution has been especially driven by discovery of unique nanoscale properties of the nanomaterials which are governed by their inherent size. Today, the total societal impact of nanotechnology is expected to be greater than the combined influences that the silicon integrated circuit, medical imaging, computer-aided engineering, and man-made polymers have had in the last century.;Many nanomaterials were also found to possess exceptional mechanical properties. This led to tremendous interest into developing composite materials by exploiting the mechanical properties of these building blocks. In spite of a tremendous volume of work done in the field, preparation of such nanocomposites (NCs) has proven to be elusive due to inability of traditional "top-down" fabrication approaches to effectively harness properties of the nano-scale building blocks.;This thesis focuses on preparation of organic/inorganic and solely organic NCs via a bottom-up nano-manufacturing approach called the layer-by-layer (LBL) assembly.;Two natural and inexpensive nanoscale building blocks are explored: nanosheets of Na+-montmorillonite clay (MTM) and rod-shaped nanocrystals of cellulose (CNRs). In the first part of the thesis, we present results from systematic study of mechanics of MTM-based NCs. Different compositions are explored with a goal of understanding the nanoscale mechanics. Ultimately, development of a transparent composite with record-high strength and stiffness is presented. In the second part, we present results from LBL assembly of the CNRs. We demonstrate feasibility of assembly and mechanical properties of the resulting films. We also demonstrate preparation of LBL films with anti- reflective properties from tunicate (a sea animal) CNRs. In the final part, we show preparation of high toughness and hierarchically organized NCs using two concepts: "exponential" LBL (e-LBL) assembly and charged polyurethanes. We show preparation of novel e-LBL structures and highly flexible LBL multilayers. We also demonstrate preparation of macro-scale composites from hierarchical, post-assembly consolidation of LBL sheets. This last result represents a potential paradigm change in the practice of LBL assembly by enabling transformation of the thin-films into macro-scale structures.
Keywords/Search Tags:Assembly, LBL, Preparation, Mechanics, Nanoscale
Related items