Font Size: a A A

Quasi-normal modes in random media

Posted on:2013-02-13Degree:Ph.DType:Thesis
University:City University of New YorkCandidate:Wang, JingFull Text:PDF
GTID:2450390008478759Subject:Physics
Abstract/Summary:
This thesis is an experimental study of microwave transmission through quasi-one-dimensional random samples via quasi-normal modes.;We have analyzed spectra of localized microwave transmitted through quasi-one-dimensional random samples to obtain the central frequency, linewidth and field speckle pattern of the modes for an ensemble of samples at three lengths. We find strong correlation between modal field speckle patterns. This leads to destructive interference between modes which explain strong suppression of steady state transmission and of pulsed transmission at early times. At longer times, the rate of decay of transmission slows down because of the increasing prominence of long-lived modes.;We have also studied the statistics of mode spacings and widths in localized samples. The distribution of mode spacings between adjacent modes is close to the Wigner surmise predicted for diffusive waves, which exhibit strong level repulsion. However, a deviation from Wigner distribution can be seen in the distribution of spacings beyond the nearest ones. A weakening in the rigidity of the modal spectrum is also observed as the sample length increases because of reduced level repulsion for more strongly localized waves. In contrast to residual diffusive behavior for level spacing statistics, the distribution of level widths are log-normal as predicted for localized waves. But the residual diffusive behavior can be seen from the smaller variance of the normalized mode width as compared to predictions for strongly localized waves.;We also measured the steady state and dynamic fluctuations and correlation of localized microwave transmitted through random waveguides. We find the degree of intensity correlation first increases, and then decays with time delay, before increasing dramatically. The variation in the spatial correlation of intensity with time delay is due to the changing effective number of modes that contribute to transmission. A minimum in correlation is reached when the number of modes contributing appreciably to transmission peaks. At long times, the degree of intensity correlation and the variance of total transmission increase dramatically. This reflects the reduced role of short-lived overlapping states and the growing weight of long-lived spectrally isolated modes.
Keywords/Search Tags:Modes, Random, Transmission, Samples
Related items