Font Size: a A A

Pedogenesis and its effects on the natural remanent magnetization acquisition history of the Chinese loess

Posted on:2005-09-04Degree:Ph.DType:Thesis
University:University of MinnesotaCandidate:Liu, QingsongFull Text:PDF
GTID:2450390008486857Subject:Environmental Sciences
Abstract/Summary:
The thick (100--300 m) Chinese loess/paleosol sequences are good archives for both paleoclimate and paleomagnetism. Previous studies have shown that the large-scale Milankovitch cycles can be recorded by the Chinese loess. However, there exist some barriers against further quantitative and accurate interpretation. The most specific one is that pedogenesis has strongly altered (overprinted) not only the acquisition history of the natural remanent magnetization (NRM) but also the paleoclimatic proxies (e.g. low-field magnetic susceptibility). Therefore, this study aims to solve this problem by quantifying the effects of pedogenesis on the loess NRM acquisition history and further to probe the mechanism of susceptibility enhancements. The thesis is divided into three parts: Part I (Chapters 2 to 7) proposes several new techniques in rock magnetism to determine the exact carriers of various magnetic parameters, e.g., susceptibility, anhysteretic remanent magnetization (ARM), NRM and the corresponding Characteristic remanent magnetization, etc; Part II (Chapters 8 and 9) focuses mainly on the mechanism of low-temperature oxidation and its effects on the magnetic signals; and Part III (Chapters 10 and 11) discusses the mechanism of susceptibility enhancements. The main conclusions and contributions of this thesis are: (1) The enhancement of magnetic susceptibility is dominated by single-domain (SD) maghemite of pedogenic origin (>50%) instead of the pedogenically produced superparamagnetic (SP) particles; (2) For loess sample, its NRM and ChRM is carried by aeolian coarse-grained partially oxidized magnetite (CG-POM). However, this primary remanence can be easily masked by the secondary Chemical remanent magnetization (CRM) carried by pedogenic maghemites; (3) Due to low-temperature oxidation, the aeolian CG-POM has a much higher coercivity than the pedogenic fine-grained particles; therefore, alternating field (AF) demagnetization is more efficient to separate the primary detrital remanent magnetization (DRM) from the secondary CRM than conventional thermal demagnetization; and (4) The enhancement of susceptibility is sensitive to precipitation more than to temperature variations.
Keywords/Search Tags:Remanent magnetization, Acquisition history, Loess, Chinese, Susceptibility, Pedogenesis, Effects, NRM
Related items