| Pristine single-walled carbon nanotubes (SWCNTs) are poorly dispersible and insoluble in many solvents and need to be chemically modified prior to their use in many applications.;Effects of the catalyst type and content on the SWCNTs final product, synthesized by induction thermal plasma (ITP), were studied to replace toxic cobalt (Co) in the feedstock. In this regard, three different catalyst mixtures (i.e. Ni-Y2O3, Ni-Co-Y2O3, and Ni-Mo-Y2O3) were used. Experimental results showed that the catalyst type affects the quality of the SWCNT final product. Similar quality SWCNTs can be produced when the same amount of Co was replaced by Ni. Moreover, the results observed in this experimental work were further explained by thermodynamic calculation results.;Thermogravimetry (TG) was used throughout the work to characterize the SWCNTs product. TG was firstly standardized by studying the effects of three main instrumental parameters (temperature ramp, TR, initial mass of the sample, IM, and gas flow rate, FR) on the Tonset and full-width half maximum (FWHM) obtained from TG and derivative TG graphs of carbon black, respectively. Therefore, a two-level factorial statistical design was performed. The statistical analysis showed that the effect of TR, IM, and to a lower extent, FR, is significant on FWHM and insignificant on Tonset.;A methodology was then developed based upon the SWCNTs synthesis using the ITP system, through an in situ chemistry approach. Ammonia (NH3) was selected and counter-currently injected into the ITP reactor at three different flow rates and by four different nozzle designs. Numerical simulation indicated a better mixing of NH3 in the ITP reactor when a certain nozzle was used. The experimental results showed the increase of D-band intensity in the Raman spectra of SWCNT samples upon the NH3 injection. NH3 could increase the nitrogen content of the SWCNTs final product up to 10 times. The SWCNTs sample treated with 15 vol% NH3 showed an enhanced dispersibility in Dimethylformamide and Isopropanol. Onion-like and planar carbon nanostructures were also observed.;This work is focused on the investigation of the synthesis of chemically modified SWCNTs material through an in situ approach. The main objectives of the presented research are: 1) to explore the in situ chemical process during the synthesis of SWCNT and 2) to closely examine the effect of a reactive environment on SWCNTs.;Complementary characterization on the SWCNT samples treated by 15 vol% NH3 indicated the surface modification of nanotubes. Metallic tubes showed a higher reactivity with NH3 than semiconducting ones. The model including the reactor thermo-flow field and NH3 thermal decomposition kinetics suggested a two-step SWCNT surface modification in which nanotubes firstly react with H and NH2 intermediates and later, NH3 chemisorbs on the nanotubes. The model also suggested that the intermediate species, like NNH and N2H2, play a role primarily in driving the NH3 decomposition rather than the chemical modification of SWCNTs.;Keywords: Single-walled carbon nanotube, Induction thermal plasma, Thermogravimetry, Kinetic, Computational fluid dynamic, Thermodynamic, modification, Functionalization. |