Font Size: a A A

Non-thermal processes on ice and liquid micro-jet surfaces

Posted on:2012-07-05Degree:Ph.DType:Thesis
University:Georgia Institute of TechnologyCandidate:Olanrewaju, Babajide OFull Text:PDF
GTID:2451390011456691Subject:Chemistry
Abstract/Summary:
The primary focus of this research is to investigate non-thermal processes occurring on ice surfaces and the photo-ejection of ions from liquid surfaces. Processes at the air-water/ice interface are known to play a very important role in the release of reactive halogen species with atmospheric aerosols serving as catalysts. The ability to make different types of ice with various morphologies, hence, different adsorption and surface properties in vacuum, provide a useful way to probe the catalytic effect of ice in atmospheric reactions. Also, the use of the liquid jet technique provides the rare opportunity to probe liquid samples at the interface; hitherto impossible to investigate with traditional surface science techniques.;In Chapter 2, the effect of ice morphology on the release of reactive halogen species from photodissociation of adsorbed organic halides on ice will be presented. Quantum state resolved measurements of neutral atomic iodine from the photon irradiation of submonolayer coverages of methyl iodide adsorbed on low temperature water ice were conducted. Temperature programmed desorption (TPD) studies of methyl iodide adsorbed on ice were performed to provide information on the effect of ice morphology on the adsorption of submonolayer methyl iodide.;The interaction and autoionization of HCl on low-temperature (80{140 K) water ice surfaces has been studied using low-energy (5--250 eV) electron-stimulated desorption (ESD) and temperature programmed desorption (TPD). A detailed ESD study of the interactions of low concentrations of HCl with low-temperature porous amorphous solid water (PASW), amorphous solid water (ASW) and crystalline ice (CI) surfaces will be presented in Chapter 3. The ESD cation yields from HCl adsorbed on ice, as well as the coverage dependence, kinetic energy distributions and TPD measurements were all monitored.;Probing liquid surface using traditional surface science technique is usually difficult because of the problem of keeping the liquid surface clean and the distortion of information by the interference of equilibrium dense vapor above the liquid. By using the liquid jet technique the ejection of ions from surface of micron sized liquid can be adequately probed with a linear time-of-flight mass spectrometer. The photoionization of pure water and aqueous solutions of NaOH, NaCl and HCl is presented in Chapter 4. The aim of this investigation was to provide a fundamental understanding of the structure of water/vacuum interfaces. In Chapter 5, the ejection of ions from salt solutions containing divalent cations is also presented. The goal of the experiment was to figure out the solvation structure and reaction dynamics of divalent metal ions, M2+ on the surface of aqueous solution. A lot of work has been done in the gas phase either by a pickup-type cluster source or by collision induced dissociation of ejected ions from electrospray. For the first time the direct monitoring of ions ejected from liquid into gas phase is explored. Possible ejection mechanisms for the ejection of cations are discussed extensively in both Chapters 4 and 5. The results presented in this thesis is a combination of experiments performed at the Georgia Institute of Technology and the Pacific Northwest National Laboratory (PNNL) which includes experiments on ice and micro-jet respectively.;The results in Chapters 2 and 3 have been submitted to the Journal of Chemical Physics and the Journal of Physical Chemistry respectively. It is important to note that the data presented in Chapter 3 was originally taken by Dr Janine Herring-Captain as part of her thesis work. It is also presented in this thesis due to effort in analyzing the data and preparation of the submitted manuscript. Chapter 4 and 5 represents papers which will also be submitted for publication in the open scientific literature. All the work leading to the results presented in these two chapters were done during my visit to PNNL and I would like to acknowledge that the instrumentation and data acquisition were done in collaboration with Nikolai Petrik and Greg Kimmel.
Keywords/Search Tags:Ice, Surface, Liquid, Processes, Ions, Presented, Ejection
Related items