Font Size: a A A

High precision gravity analysis and hydrological modeling from the Lunar Laser Ranging Observatory at Apache Point, New Mexico

Posted on:2015-02-28Degree:M.SType:Thesis
University:Saint Louis UniversityCandidate:Liang, JiahaoFull Text:PDF
GTID:2470390017990650Subject:Geophysics
Abstract/Summary:
The NASA-supported Lunar Laser Ranging project (LLR) is located at Apache Point, New Mexico, which strives to precisely measure the orbital distance between the Earth and the Moon in an accuracy of a few millimeters. To archive this objective, LLR project requires precise data on local ground deformation, which is difficult to measure directly. However, the high precision gravity data is the reflection of vertical ground deformation of the Earth, therefore the gravity data is able to contribute to the LLR project. Gravity time series is affected by Earth tides, atmospheric pressure, polar motion, and the most critical effect, local hydrology. In order to isolate pure geodetic variation, these effects must be removed from the data. Thus, the goal of this research is to create models of above effects, especially local hydrology model, in order to isolate the vertical deformation signal. The Earth tides, atmospheric pressure and polar motion effects have been modeled and subtracted from gravity data (2009~2012). The local hydrological model has been created based on the in-situ data, which are rainfall, snowfall and temperature. The correlation coefficient and RMS misfit between the hydrological model and gravity residual (2010~2012) is 0.92 and 1.26 microGal. The instrument drift corrections in 2009 have been reanalyzed after comparing with some global hydrological models. The gravity residual from new corrections showed a correlation coefficient of 0.76 and RMS misfit of 1.25 microGal. The isolated deformation signal was obtained after we subtracted the hydrological effects, and the results can be used for further modeling.
Keywords/Search Tags:Hydrological, Gravity, New, Model, LLR, Deformation, Effects
Related items