| Oil from shale and tight formations has helped the United States produce close to 10 million barrels of oil per day, a 40-year high. Well characterized sintered nano materials will serve as calibration materials for understanding important thermodynamic and flow properties of fluids in similar formations. To this effect, sintered mesoporous silica monoliths containing micro- and nano-porosity are characterized across multiple length scales at various processing temperatures using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers hardness tests, and Brunauer-Emmett-Teller (BET) gas adsorption measurements.;Results show that the mesoporosity in raw SBA-15 silica powders can be retained during spark-plasma sintering (SPS) up to 850 ºC which is lower than those achieved by conventional sintering techniques (>1050 ºC). Details of micro- and meso-porosity were revealed by studying the internal structure through SEM and in-situ TEM tomography of the sintered specimens in comparison to the pristine silica powder. The microporosity is retained up to 950°C under the same pressure, and the degree of microporosity increases when the mesopores collapse due to individual nanoparticle shrinkage. In situ TEM characterization of mesoporosity in the absence of applied pressure reveal pore collapse above 1050°C, which is considerably above the temperatures observed under applied pressures during SPS processing.;The degree of microporosity, obtained under different processing conditions, is correlated to the mechanical properties, available surface area and pore morphology. In spite of the unique synthesis process, sintered mesoporous silica satisfies the Ryshkewitch relationship -- the correlation of mechanical properties to porosity. Subsequently, in-situ TEM nanoindentation was conducted to investigate the mechanical properties of individual mesoporous silica nanoparticles.;The ability to control the micro- and meso-porosity of these consolidated disk-shaped samples will allow emulation of the hierarchical structures found in many naturally occurring materials. |