Font Size: a A A

Program Development And Application For Hydraulic Reinforced Concrete Structures Based On Commercial Software

Posted on:2005-12-02Degree:DoctorType:Dissertation
Country:ChinaCandidate:Z J QuFull Text:PDF
GTID:1102360152955737Subject:Structural engineering
Abstract/Summary:PDF Full Text Request
With the rapid development of the computer technology, nonlinear analysis method is widely applied in the analysis of some important hydraulic reinforced concrete structures. This paper is aimed at solving some problems in the non-linear analysis of hydeaulic r.e.s. Based on the studies done at home and abroad, this paper has finished mainly the following work:(1) Experiments have been performed to study the bond-slip behavior between earthquake-resistant bars and the concrete in Xiaowan arch dam. Strain distributions of earthquake-resistant bars and the concrete under different loading levels are obtained. Bond stress and slip distribution along the anchorage length are also obtained. Earthquake-resistant bars show good ductility under cyclic loading. The experimental method is improved to prevent the damage caused by strain gauges between bars and the concrete. The earthquake-resistant bar should be made of steel with the distinct yield. Because this kind of bars not only can limit the opening width of the transverse joints but also can alleviate the cracking of the concrete. The suggested anchorage length of the earthquake-resistant bars is 1200mm. Non-bonding-range is imperative not only for the control of the opening width of transverse joints, but also for the improvement of bond-slip behavior.(2) Based on the ANSYS software, the secondary development of ANSYS is carried out. The method about the secondary development of ANSYS is expatiated systematically. By adding the mixed hardening model and bond-slip model into the model library of ANSYS, the development process is introduced in detail. Finally, by comparing the calculation results with the experimental data of the earthquake-resistant bars, the validity of the secondary development is verified.(3) The influence of the thickness of the upper plate on the dynamic behavior of the tower structure of the ship elevator of Longtan Project is analyzed. The limitation of representing the dynamic behavior of the tower structure as a whole by the dynamic behavior of a single tower structure is discussed in detail. With the application of the program of the secondary development, two sets of earthquake records are used to perform the nonlinear dynamic analysis. The influences of different earthquake records, two-direction dynamic action and vertical dynamic action on the responses of the tower structure are analyzed.(4) Pushover method is used to do the nonlinear static analysis on the tower structure of the ship elevator. The Pushover method is simplified to enhance the efficiency of the analysis. Then, Capacity Spectrum method is used to evaluate the earthquake-resistant capacity of the tower structure of the ship elevator.(5) The three dimensional FEM(Finite Element Method) and the submodeling technique are used to analyze the water intake of the Longtan hydropower station. The influences of the uplift pressure on the foundation base and the slot of the intake are analyzed with the spatial elastic analysis method. The cracking detail in the key zone, near the gate slot, is analyzed with the spatial nonlinear analysis method. Finally, the original reinforcement scheme is evaluated.
Keywords/Search Tags:hydraulic reinforced concrete structures, nonlinear analysis, bond-slip, dynamic analysis, nonlinear static analysis, secondary development
PDF Full Text Request
Related items