Font Size: a A A

The Regulatory Effects Of Glucocorticoid On The Prefrontal Cortex Corticotropin-releasing Factor Expression

Posted on:2011-01-02Degree:DoctorType:Dissertation
Country:ChinaCandidate:Q Y MengFull Text:PDF
GTID:1114360305466756Subject:Neurobiology
Abstract/Summary:PDF Full Text Request
1. The regulation of Corticotropin Releasing Factor and Corticotropin Releasing Factor Receptor 1 in rat prefrontal cortexCorticotropin releasing factor (CRF) is considered as the central driving force in the stress response and plays a key role in the pathogenesis of depression. CRF neurons have been identified to locate in most regions of the prefrontal cortex (PFC), a brain region that is highly associated with the control of emotion and cognition. However, little is known on the regulation of CRF in this region. In this study, we aimed to identify the regulatory effect of acute restraint stress and glucocorticoid on PFC CRF and characterize the possible function of CRF in the PFC. We found that acute restraint stress increased and glucocorticoid decreased PFC CRF mRNA expression. The expression of glucocorticoid receptor (GR) was found to colocalize with CRF neurons in the PFC. In addition, recruitment of GR by the CRF promoter was observed in vivo. Specific attention was paid to the effect of CRF on CRF receptor 1 (CRFR1) expression in primary PFC cultures. The results showed that CRF increased CRFR1 expression through the MEK-ERK1/2 pathway. In summary, this study may contribute to the better understanding of CRF functions in the PFC.2. Distribution of Acid-sensing Ion Channel 3 in the Rat HypothalamusAcid-sensing ion channels (ASICs), the members of the epithelial sodium channel/degenerin (ENaC/DEG) superfamily, are proton-gated voltage-insensitive cation channels. Six ASIC subunits have been identified and characterized in the mammalian nervous system so far. Of these subunits, ASIC3 has been shown to be predominantly expressed in the peripheral nervous system of rodents and implicated in mechnosensation, chemosensation and pain perception. Little is known on ASIC3 in the brain. We thus employed reverse transcription-polymerase chain reaction (RT-PCR) and Western blot to examine the expression of ASIC3 in various rat brain regions, including hippocampus, amygdala, caudate putamen, prefrontal cortex, and hypothalamus. Specific attention was paid to the distribution of ASIC3 in the hypothalamus of rats by using immunohistochemistry. ASIC3 immunoreactivity showed a widespread pattern throughout the hypothalamus, with the highest density in paraventricular nucleus, supraoptic nucleus, suprachiasmatic nucleus, arcuate nucleus, dorsomedial nucleus, median preoptic nucleus, ventromedial preoptic nucleus, and dorsal tuberomammillary nucleus. This study may contribute to the understanding of ASIC3 functions in the central nervous system.
Keywords/Search Tags:CRF, PFC, acute restraint stress, glucocorticoid, CRFR1, ASIC3, hypothalamus
PDF Full Text Request
Related items