Font Size: a A A

Testing the gravitational inverse-square law at centimeter scales

Posted on:2011-05-21Degree:Ph.DType:Dissertation
University:University of WashingtonCandidate:Bonicalzi, RiccoFull Text:PDF
GTID:1440390002467933Subject:Physics
Abstract/Summary:
Many attempts to unify gravity with the Standard Model entail a gravitational inverse-square-law violation (ISLV) at some low level. This dissertation reports on the initial phase of a torsion-pendulum null experiment searching for such a violation in the interaction between two macroscopic bodies with a characteristic separation of 12 cm. Central to the experimental design is the special configuration of the mass distributions of both the pendulum and source mass to provide high-sensitivity to the horizontal gradient of the Laplacian of the interaction potential (a signature of ISLV), while strongly suppressing coupling through Newtonian gravity. Specifically, this design ensures that gravitational systematic effects arise only at second order in the fabrication errors of the pendulum and source mass.;A key aspect of this work is the choice of the second-harmonic amplitude of pendulum oscillation as the torque observable, instead of the traditional oscillation frequency. This relatively recent torsion-pendulum method is markedly less sensitive to changes in torsion-fiber temperature and enables the ambient-temperature instrumentation of the initial phase to achieve necessary noise performance without heroic efforts to stabilize temperature. As details of the second-harmonic method have not yet been published, the presentation here dwells on a number of subtleties involved in analyzing the data.;Experimental results are reported assuming a Yukawa-type interaction anomaly, where a is the strength of the Yukawa term relative to Newtonian gravity. A preliminary set of 34 data runs, each around a day in duration, produced a value of alpha = (-6.3 +/- 7.5) x 10-5. In the absence of significant systematic effects, even this interim result would have placed tighter bounds on ISLV than previously appearing in the literature. Unfortunately, an accelerated Department of Energy deadline for demolition of our Hanford laboratory facility compelled a shift of focus to the principal phase of this experiment before resolving two apparently marginal, but significant sources of systematic error. These and resolved systematic effects are discussed in the context of the second-harmonic method.
Keywords/Search Tags:Gravitational, Systematic effects, ISLV
Related items