Digital holographic diagnostics of near-injector region | | Posted on:2010-10-26 | Degree:Ph.D | Type:Dissertation | | University:Oklahoma State University | Candidate:Lee, Jaiho | Full Text:PDF | | GTID:1440390002480427 | Subject:Engineering | | Abstract/Summary: | PDF Full Text Request | | Study of primary breakup of liquid jets is important because it is motivated by the application to gas turbine fuel injectors, diesel fuel injectors, industrial cleaning and washing machine, medical spray, and inkjet printers, among others. When it comes to good injectors, a liquid jet has to be disintegrated into a fine spray near injector region during primary breakup. However the dense spray region near the injectors is optically obscure for Phase Doppler Interferometer like Phase Doppler Particle Analyzers (PDPA). Holography can provide three dimensional image of the dense spray and eliminate the problem of the small depth of focus associated with shadowgraphs. Traditional film-based holographic technique has long been used for three dimensional measurements in particle fields, but it is time consuming, expensive, chemically hazardous. With the development of the CCD sensor, holograms were recorded and reconstructed digitally. Digital microscopic holography (DMH) is similar to digital inline holography (DIH) except that no lens is used to collimate the object beam. The laser beams are expanded with an objective lens and a spatial filter. This eliminates two lenses from the typical optical path used for in-line holography, which results in a much cleaner hologram recording. The DMH was used for drop size and velocity measurements of the breakup of aerated liquid jets because it is unaffected by the non-spherical droplets that are encountered very close to the injector exit, which would cause problems for techniques such as Phase Doppler Particle Analyzer, otherwise. Large field of view was obtained by patching several high resolution holograms. Droplet velocities in three dimensions were measured by tracking their displacements in the streamwise and cross-stream direction and by tracking the change in the plane of focus in the spanwise direction. The uncertainty in spanwise droplet location and velocity measurements using single view DMH was large at least 33%. This large uncertainty in the spanwise direction, however, can be reduced to 2% by employing double view DMH. Double view DMH successfully tracked the three dimensional bending trajectories of polymer jets during electrospinning. The uncertainty in the spatial growth measurements of the bending instability was reduced using orthogonal double view DMH. Moreover, a commercial grade CCD was successfully used for single- and double-pulsed DMH of micro liquid jet breakup. Using a commercial grade CCD for the DMH, the cost of CCD sensor needed for recording holograms can be reduced. | | Keywords/Search Tags: | DMH, CCD, Digital, Liquid, Breakup | PDF Full Text Request | Related items |
| |
|