Font Size: a A A

Magnesium boride superconductors: Processing, characterization and enhancement of critical fields

Posted on:2008-02-15Degree:Ph.DType:Dissertation
University:The Ohio State UniversityCandidate:Bhatia, MohitFull Text:PDF
GTID:1440390005458438Subject:Physics
Abstract/Summary:
In this work, the basic formation of in-situ MgB2, and how variations in the formation process influence the electrical and magnetic properties of this material was studied. Bulk MgB2 samples were prepared by stoichiometric, elemental powder mixing and compaction followed by heat-treatment. Strand samples were prepared by a modified powder-in-tube technique with subsequent heat-treatment. The influence of various heat-treatment schedules on the formation reaction was studied. Two different optimum heat-treatment windows were indentified, namely, low-temperature heat-treatment (below the melting point of Mg i.e. between 620--650°C) and high-temperature heat-treatment (>650°C) for the preparation of MgB2 with good transport properties. XRD was used to confirm phase formation and microstructural variations were studied with the help of SEM. Following a study of the reaction temperature regimes, the focus turned to critical field enhancement via doping with various compounds targeting either the Mg or the B sites. The effects of these dopants on the superconducting properties, in particular the critical fields, were studied. Large increases in irreversibility field, muoH irr, and upper critical field, Bc2, of bulk and strand superconducting MgB2 were achieved by separately adding SiC, amorphous C, and selected metal diborides (NaB2, ZrB 2, TiB2) in bulk samples and three different sizes of SiC (∼200 nm, 30 nm and 15 nm) in strand samples. Lattice spacing shifts and resistivity measurements (on some samples) were consistent with dopant introduction to the lattice. It was also found that both muoH irr and Bc2 depend on the sensing current level which may be an indication of current path percolations. These increases in the Bc2 were also complimented by an increase in the transport Jcs, especially for the SiC doped samples. It was important to differentiate between the effects on the transport properties arising from possible particulate enhanced flux pinning from that due to Bc2 enhancements, associated with smaller length scale disorder. Flux pinning analysis performed on SiC doped samples showed that while some small level of particulate-enhanced pinning was present, the majority of the pinning was associated with a grain boundary mechanism, suggesting that transport Jc increases were predominantly Bc2 related.;Lastly, since the residual resistivity of a material is directly related to the electron scattering and hence Bc2, it can therefore be used as a measure to confirm the dopant introduction into the lattice. Normal-state resistivities were measured for various binary and doped MgB2 samples as a function of temperature. These resistivities were modeled based on the Bloch-Gruneissen equations. This allowed extraction of the residual resistivities, Debye temperatures and current carrying volume fractions for these samples, as well as providing information on the electron-phonon coupling constant. The residual resistivity was found to increase by a factor of three, Debye temperature decreased and the electron-phonon coupling constant increased marginally for the SiC doped samples as compared to the binary sample. This change in rho0 and theta D confirmed the XRD evidence that the dopants were increasing mu oHirr and Bc2 by substituting on the B and Mg sites of the crystalline lattice.
Keywords/Search Tags:Bc2, Critical, Sic doped samples, Mgb2, Field, Lattice, Formation
Related items