Font Size: a A A

Optical remote sensing of properties and concentrations of atmospheric trace constituents

Posted on:2009-06-12Degree:Ph.DType:Dissertation
University:City University of New YorkCandidate:Vladutescu, Daniela VivianaFull Text:PDF
GTID:1440390005957091Subject:Engineering
Abstract/Summary:
The effect of human activities on the global climate may lead to large disturbances of the economic, social and political circumstances in the middle and long term. Understanding the dynamics of the Earth's climate is therefore of high importance and one of the major scientific challenges of our time.;The estimation of the contribution of the Earth's climate system components needs observation and continuous monitoring of various atmospheric physical and chemical parameters. Temperature, water vapor and greenhouse gases concentration, aerosol and clouds loads, and atmospheric dynamics are parameters of particular importance in this respect. The quantification of the anthropogenic influence on the dynamics of these above-mentioned parameters is of crucial importance nowadays but still affected by significant uncertainties.;In the present context of these huge uncertainties in our understanding of how these different atmospheric compounds contribute to the radiative forcing, a significant part of my research interest is related to the following topics: (1) Development of lidar (Light Detection and Ranging)-based remote sensing techniques for monitoring atmospheric compounds and processes; (2) Aerosols hygroscopic properties and atmospheric modeling; (3) Water vapor mixing ratio and relative humidity estimation in the troposphere; (4) Characterization of the long-range transported aerosols; (5) Ambient gases detection using Fourier Transform Interferometers (FTIR); (6) Design of inexpensive Fabry Perot Interferometer for visible and near infrared for land and ocean surface remote sensing applications.;The lidar-based remote sensing measurement techniques for the monitoring of climate change parameters where implemented at the City College of the City University of New York (CCNY/CUNY) LIDAR station and are presented in the second section of the paper. The geographical location of the CCNY lidar station is 40.86N, -73.86W.;Among the lidar retrievals one important application is the detection of water vapor in the atmosphere. Water vapor is an important greenhouse gas due to its high concentration in the atmosphere (parts per thousand), among the trace constituents, and its interaction with tropospheric aerosols particles. The upward convection of water vapor and aerosols due to intense heating of the ground lead to aggregation of water particles or ice on aerosols in the air forming different types of clouds at various altitudes. In this regard a reliable method of retrieving atmospheric water vapor profiles is presented in the third part of the paper. The proposed technique here is the Raman lidar procedure that is calibrated afterwards. The accuracy of the water vapor measurements is obtained by calibration techniques based on different techniques that where compared and validated. The calibration method is based on data fusion from different sources like: GPS (global positioning system) sunphotometer, radiosonde.;The condensation of water vapor on aerosols is affecting their size, shape, refractive index and chemical composition. The warming or cooling effect of the clouds hence formed are both possible depending on the cloud location, cover, composition and structure. The effect of these clouds on radiative global forcing and therefore on the short and long term global climate is of high interest in the scientific world. In an effort to understand the hygroscopic properties of aerosols, a major interest is manifested in obtaining accurate vertical water vapor profiles simultaneously with aerosol extinction and backscatter profiles. A reliable method of retrieving atmospheric water vapor profiles and aerosols backscatter and extinction in the same atmospheric volume is presented in the fourth chapter of the paper.;As mentioned above the determination of greenhouse gases and other molecular pollutants is important in process control as well as environmental monitoring. Since many molecular vibrational modes are in the infrared, molecules can absorb light from an infrared source (such as the sun or an artificial source such as a glow rod) and therefore, if the source spectrum is known, the absorption spectra of the sample can be measured. Therefore, any spectroscopy method needs a well characterized infrared source as well as an accurate high resolution spectrometer.;In the fifth chapter of the paper is presented a standard technique for open-path detection of greenhouse gases which is based on Fourier Transform Infrared Spectroscopy (FTIR). A MIDAC open path FTIR instrument is presented along with measurements and analyses.;In the group of spectrometers with a high spatial spectral resolution is found as well the Fabry Perot Interferometer that is presented in chapter 6. A visible-near infrared (VIS-NIR) scanning Fabry Perot Imager design is proposed based on combinations of Fabry Perot etalons and/or broadband interference filters that can in principle be used as a hyperspectral sensors from geostationary spaceborne platforms.;Keywords. Lidar, Raman, Mie, water vapor mixing ratio, backscatter, extinction, relative humidity, aerosol hygroscopic properties, atmospheric model, FTIR, FPI, green house gases...
Keywords/Search Tags:Atmospheric, Water vapor, Remote sensing, FTIR, Hygroscopic properties, LIDAR, Climate, Gases
Related items