Font Size: a A A

All-optical spinor Bose-Einstein condensation and the spinor dynamics-driven atom laser

Posted on:2007-10-24Degree:Ph.DType:Dissertation
University:California Institute of TechnologyCandidate:Lundblad, Nathan EricFull Text:PDF
GTID:1440390005967970Subject:Physics
Abstract/Summary:
Optical trapping as a viable means of exploring the physics of ultracold dilute atomic gases has revealed a new spectrum of physical phenomena. In particular, macroscopic and sudden occupation of the ground state below a critical temperature---a phenomenon known as Bose-Einstein condensation---has become an even richer system for the study of quantum mechanics, ultracold collisions, and many-body physics in general. Optical trapping liberates the spin degree of the BEC, making the order parameter vectorial ('spinor BEC'), as opposed to the scalar order of traditional magnetically trapped condensates.; The work described within is divided into two main efforts. The first encompasses the all-optical creation of a Bose-Einstein condensate in rubidium vapor. An all-optical path to spinor BEC (as opposed to transfer to an optical trap from a magnetic trap condensate) was desired both for the simplicity of the experimental setup and also for the potential gains in speed of creation; evaporative cooling, the only known path to dilute-gas condensation, works only as efficiently as the rate of elastic collisions in the gas, a rate that starts out much higher in optical traps. The first all-optical BEC was formed elsewhere in 2001; the years following saw many groups worldwide seeking to create their own version. Our own all-optical spinor BEC, made with a single-beam dipole trap formed by a focused CO2 laser, is described here, with particular attention paid to trap loading, measurement of trap parameters, and the use of a novel 780 nm high-power laser system.; The second part describes initial experiments performed with the nascent condensate. The spinor properties of the condensate are documented, and a measurement is made of the density-dependent rate of spin mixing in the condensate. In addition, we demonstrate a novel dual-beam atom laser formed by outcoupling oppositely polarized components of the condensate, whose populations have been coherently evolved through spin dynamics. We drive coherent spin-mixing evolution through adiabatic compression of the initially weak trap. Such dual beams, nominally number-correlated through the angular momentum-conserving collision 2m0 &lrhar2; m+1 + m-1 have been proposed as tools to explore entanglement and squeezing in Bose-Einstein condensates.
Keywords/Search Tags:Bose-einstein, Optical, Spinor, Condensate, Trap, Laser, BEC
Related items