Font Size: a A A

Long, high-gradient magnetic atom guide and progress towards an atom laser

Posted on:2007-12-20Degree:Ph.DType:Dissertation
University:University of MichiganCandidate:Olson, Spencer EFull Text:PDF
GTID:1440390005977876Subject:Physics
Abstract/Summary:
The continuous injection and propagation of a cold atomic beam in a 1.7 m long high-gradient (up to 2.7 kG/cm) magnetic guide is demonstrated. Continuous injection is accomplished by side-loading a magnetic guide with atoms from a sequence of two modified magneto-optical traps. In the high-gradient portion of the guide, the guided atomic beam has a transverse temperature of 420 muK +/- 40 muK, a longitudinal temperature of 1 mK, and an average velocity of order 1 m/s.; Essential for the characterization of this steady-state atomic beam, imaging methods compatible with the high field-gradients associated with this magnetic guide have been investigated and developed. By utilizing a probe laser tuned to an open transition, the fluorescence yield per atom is largely fixed throughout the trap volume, independent of the trapping field. This enables a reliable conversion of fluorescence images into atomic-density profiles.; Using a fixed radio-frequency (nurf) current coupled directly onto the guide wires, continuous and selective removal of atoms with a transverse energy exceeding hnurf is demonstrated. This removal scheme is the essence of an rf filter, where the number of modes occupied by the atomic flow is reduced. Through sufficient rf-filtering, a near-single-mode guided atomic beam should be achievable, enabling basic atom-interferometric experiments. The extension of this fixed-frequency removal of atoms for continuous position-resolved evaporative cooling in a long magnetic guide is outlined.; Employing an innovative gridless technique for performing Direct Simulation of rarefied gas dynamics via Monte Carlo (DSMC), the evaporative cooling process in a guided atomic beam has been simulated. Both fixed-frequency as well as variable-frequency evaporative cooling layouts have been explored and the results of these simulations are presented. The implementation of this gridless technique is presented and its benefits are briefly outlined.; In parallel with the development of a continuous-wave atom laser, tools suited to manipulate cold atomic beams in atom guides have been explored. An atomic guide with a tunable aspect ratio, using rf-dressed state potentials, is presented.
Keywords/Search Tags:Atom, Guide, High-gradient, Magnetic, Continuous
Related items