Font Size: a A A

Applications of advanced electrochemical techniques in the study of microbial fuel cells and corrosion protection by polymer coatings

Posted on:2011-05-11Degree:Ph.DType:Dissertation
University:University of Southern CaliforniaCandidate:Manohar, Aswin KarthikFull Text:PDF
GTID:1441390002457225Subject:Engineering
Abstract/Summary:
The results of a detailed evaluation of the properties of the anode and the cathode of a mediator-less microbial fuel cell (MFC) and the factors determining the power output of the MFC using different electrochemical techniques are presented in Chapter 1. In the MFC under investigation, the biocatalyst - Shewanella oneidensis MR-1 - oxidizes the fuel and transfers the electrons directly into the anode which consists of graphite felt. Oxygen is reduced at the cathode which consists of Pt-plated graphite felt. A proton exchange membrane separates the anode and the cathode compartments. The electrolyte was a PIPES buffer solution and lactate was used as the fuel. Separate tests were performed with the buffer solution containing lactate and with the buffer solution with lactate and MR-1 as anolytes.;Electrochemical Impedance Spectroscopy (EIS) carried out at the open-circuit potential (OCP) has been used to determine the electrochemical properties of the anode and the cathode at different anolyte conditions. Cell voltage (V) -- current (I) curves were recorded using a potentiodynamic sweep between the open-circuit cell voltage and the short- circuit cell voltage. Power (P)-V curves were constructed from the recorded V-I data and the cell voltage, Vmax, at which the maximum power could be obtained, was determined. P- time (t) curves were obtained by applying Vmax or using a resistor between the anode and the cathode that would result in a similar cell voltage. Cyclic voltammograms (CV) were recorded for the anode for the different anolytes. Finally, anodic polarization curves were obtained for the anode with different anolytes and a cathodic polarization curve was recorded for the cathode.;The internal resistance (Rint) of the MFC has been determined as a function of the cell voltage V using EIS for the MFC described above and a MFC in which stainless steel (SS) balls had been added to the anode compartment. The experimental values of Rint of the MFCs studied here are determined by the sum of the polarization resistance of the anode (Rap) and the cathode (Rcp), and therefore Rint depends on V. The ohmic contribution to the Rint was very small. It has been found that Rint decreased with decreasing cell voltage as the increasing current flow decreased R ap and Rcp. In the presence of MR-1, Rint was lower by a factor of about 100 than Rint of the MFC with buffer and lactate as anolyte. Additions of SS balls to the anode compartment produced a very large decrease of Rint. For the MFC containing SS balls in the anode compartment no significant further decrease of Rint could be observed when MR-1 was added to the anolyte.;In Chapter 2, EIS has been used to determine the properties and stability of polymer coatings based on different chromate or chromate-free pretreatments and primers. Five sets of coated aluminum 2024 samples were exposed to 0.5N NaCl for a period of 31 days. Impedance spectra of the samples were measured during this period and the changes of the properties of the different coatings were studied as a function of time. From the analysis of the fit parameters of the impedance spectra, it was found that the corrosion protection of the coated samples depended on the type of primer used. The coating with the chromate based primer provided better corrosion protection than the coating with the chromate free primer.;After 31 days of exposure, one sample from each set was scribed and exposed to 0.5N NaCl. The corrosion behavior of the scribed coatings was found to be dependent upon the type of pretreatment employed. The samples with the chromate conversion coating pretreatment showed better corrosion resistance in the scribed area than the samples that were treated by the trivalent chromium based method.
Keywords/Search Tags:Corrosion, Cell, Fuel, Anode, MFC, Electrochemical, Samples, Coatings
Related items