Font Size: a A A

Light metal alanates and amides for reversible hydrogen storage applications

Posted on:2009-09-08Degree:Ph.DType:Dissertation
University:The University of UtahCandidate:Lu, JunFull Text:PDF
GTID:1441390002491586Subject:Engineering
Abstract/Summary:
Hydrogen is undoubtedly one of the key alternatives to replace petroleum products as a clean energy carrier for both transportation and stationary applications. Although there have been numerous material systems studied as potential candidates for hydrogen storage applications, none of the materials known to date has demonstrated sufficient hydrogen capacity or efficiency in the required operating temperature ranges. There are still considerable opportunities for the discovery of new materials that could lead to advances in science as well as commercial technologies in this area. In this study, two new hydrogen-storage systems, i.e. alanate/amide and LiMgN, are investigated.;Firstly, we found that if LiAlH4 and LiNH2 are allowed to react in a proper molar ratio, the LiH that forms as an intermediate product of the dehydrogenation of LiAlH4 can subsequently react with LiNH2 to release H2 at temperatures below 300°C, much lower than that without LiNH2. However, this system is only partially reversible. The difficulty of reversing the reaction is attributed to the irreversibility of the dehydrogenation reaction of LiAlH4 to Li3AlH6. Further experimental results showed that the reversible storage capacity of the combined alanate/amide material system is increased to 7.0 wt% under 300°C, if LiNH2 were reacted with Li3AlH6, instead of LiAlH4, in a 3:1 molar ratio. We also found that the re-formation of Li3AlH 6 depends strongly on the heating rate during the hydrogenation process. To improve the kinetic and thermodynamic properties of the Li-Al-N-H systems, the reaction between Li3AlH6 and Mg(NH2) 2 was studied based on the understanding of the destabilizing effect of amide on alanates. The Li-Al-Mg-N-H system would have better kinetic properties than the Li-Al-N-H system due to the addition of Mg, based on the published research results on the comparison between the Li-Mg-N-H and Li-N-H systems. A reversible 6.2 wt% H2 storage capacity has been demonstrated under the conditions of this study.;Secondly, our experimental findings in this study also demonstrated the potential of a new type of nitride---binary light metal nitride for hydrogen storage. The reaction of MgH2 with LiNH2 in 1:1 ratio produces 8.1 wt% of hydrogen with the dehydrogenated product being LiMgN. This binary nitride LiMgN can be hydrogenated under 2000 psi hydrogen pressure and 160°C with TiCl3 as catalyst. A reversible 8 wt% H 2 storage capacity has been demonstrated under the conditions used in this study.
Keywords/Search Tags:Hydrogen, Storage, Reversible, Wt%, Demonstrated
Related items