Font Size: a A A

Transmission electron microscopy characterisation of 0-D nanomaterials

Posted on:2011-10-02Degree:Ph.DType:Dissertation
University:Universiteit Antwerpen (Belgium)Candidate:Turner, Stuart MatthewFull Text:PDF
GTID:1441390002951086Subject:Physics
Abstract/Summary:
When materials are scaled down to the nanometre level, a change in physical behaviour is frequently observed. In so-called 0-D nanomaterials (nanoparticles), these unique nanoscale properties are most abundant and are usually linked to either a change in (electronic) structure of the material or to the dominating influence of the particle surface at the nanometre scale.;In this doctoral work the nanoscale properties of several nanoparticle systems have been studied using advanced transmission electron microscopy (TEM). Every material that was studied required for its solution a unique approach and a host of transmission electron microscopy techniques. The title of this doctoral work can be freely translated as "retrieving quantitatively the maximal and most accurate chemical, structural and morphological information from nanoparticles by advanced transmission electron microscopy, to uncover and explain their unique properties".;Chapter 1 gives a brief general introduction to the world of nanomaterials and nanotechnology in general and more specifically to 0-D nanomaterials (nanoparticles). The unique properties and potential applications of these materials are described. The production of 0-D nanomaterials is not covered in this chapter, as this is an extremely broad field to cover in only a few pages. Instead, the production method for each of the materials is left to the detailed chapters that follow.;In Chapter 2 the main transmission electron microscopy techniques used to characterise the materials in the further chapters are described together with the microscopes used to perform these techniques and their parameters of operation. Again, the sample-specific setups are listed in the detailed chapters that follow.;Chapter 3 covers all work carried out on luminescent detonation nanodiamond powder for drug delivery and bio-medical imaging applications. Specific attention is paid to the morphology, surface chemistry and nitrogen incorporation of detonation nanodiamond particles cleaned by novel routes, and the possibility of production of luminescent N-V centres within the diamond nanoparticles is studied.;Chapter 4 deals with self-arranged Co nanoparticle arrays, so-called superlattices. By closely studying the oxidation behaviour of such arrays, a new intrinsic property has been discovered: enhanced stability against oxidation of self-arranged cobalt nanoparticles. This intriguing physical behaviour of arranged cobalt nanoparticles has never been observed before.;Chapter 5 describes and discusses all results obtained from TEM investigation of hybrid nanoporous-nanoparticle materials for advanced catalysis applications: first, the possibilities of TEM for the characterisation of the metal MOF material family; and second, the example of Au ZIF.;Finally, in Chapter 6, assisted spray-pyrolysis generated ZnO nanoparticles are studied. The ZnO nanomaterial produced by a novel assisted spray pyrolysis method is compared to conventionally spray pyrolysed ZnO nanomaterials. The influence of assisted spray pyrolysis production on the size, morphology and optical properties (UV blocking capabilities) of the ZnO nanoparticles is studied for the case of citric-acid assisted spray pyrolysis.
Keywords/Search Tags:Transmission electron microscopy, 0-D, Assisted spray pyrolysis, Nanoparticles, Studied, Zno
Related items