Font Size: a A A

Charge and energy transport in one-dimensional nanomaterials

Posted on:2011-03-18Degree:Ph.DType:Dissertation
University:Tulane University School of Science and EngineeringCandidate:Blaustein, Gail SFull Text:PDF
GTID:1441390002953426Subject:Chemistry
Abstract/Summary:
This dissertation is comprised of two parts: Charge transport in DNA hair-pins and light transport in linear arrays of dielectric spherical particles. Experimental results suggest specific charge (hole) migration kinetics for stilbene-capped DNA hair-pins of the form Sa(AT)nSd, where Sa and Sd denote the acceptor and donor stilbene respectively and (AT) n a bridge of adenine-thymine base pairs of length n = 1 -- 7. Kinetics equations are derived from experimental data for both charge separation and recombination. Counterion binding to the radicalized stilbene ions is considered a significant contributor to charge migration kinetics. In the second part, bound modes infinite linear chains of dielectric particles of various lengths and particle materials are investigated. Through a unique application of the multisphere Mie scattering formalism, numerical methods are developed to calculate eigen-optical modes for various arrays of particles. Eigenmodes with the highest quality factor are identified by the application of a modified version of the Newton-Raphson algorithm. Convergence is strong using this algorithm for linear chains of up to several hundred particles. By comparing the dipolar approach with the more complex approach utilizing a combination of both dipolar and quadrupolar approaches, the dipolar approach is shown to have an accuracy of approximately 99%. The quality factor increases with the cubed value of the number of particles in agreement with previously developed theory. The effects of disordering of particle sizes and inter-particle distances as well as interference of guiding modes in "traffic circle" waveguide configurations will be discussed.
Keywords/Search Tags:Charge, Transport
Related items