Font Size: a A A

Studies of Aqueous and Non-Aqueous Electrochemical Interface for Applications in Microelectronic and Energy Storage Systems

Posted on:2011-11-05Degree:Ph.DType:Dissertation
University:Clarkson UniversityCandidate:Zheng, JianpingFull Text:PDF
GTID:1441390002955037Subject:Chemistry
Abstract/Summary:
Various electrochemical techniques were utilized to study a wide range of electrochemical systems in this dissertation. Mainly they are grouped in three sections: 1) the conventional metal-aqueous systems for new applications in modern microelectronic devices, 2) unconventional ceramic-organic systems for applications in Li-ion batteries and 3) novel systems composed of ionic liquids and carbon series electrodes. The objects are to probe the electrochemical/chemical reactions and interfacial structures, which are the common features of the aforementioned systems. This dissertation mainly focuses on experimental aspects, however, some theories and new models used to elucidate the experiment data have also been developed and presented. Some new experimental techniques have been explored and their limitations and validity have also been discussed.;Oxalic acid (OA)-based nonalkaline solutions with H2O 2 are found to support chemically mediated removal of Ta-oxide surface films on Ta. The associated surface reactions are critical for chemical mechanical planarization (CMP) of Ta barrier. In chapter 4, a Ta coupon electrode is used as a model system in abrasive-free solutions of OA and H2O 2, where the chemical component of CMP is selectively examined. In chapter 5, electrochemical impedance spectroscopy (EIS) is employed to study the competitive reactions of surface corrosion and passivating film formation on a Cu-rotating disc electrode (RDE) in pH-adjusted solutions of H2O2, acetic acid (HAc) and ammonium dodecyl sulfate (ADS).;Micrometric LiMn2O4 particles are mechano-chemically modified by ball-milling to obtain a mixture of nano- and micro-scale particles. In chapter 6, this mixture is tested as a potential active cathode material for rapid-charge Li ion batteries, and also as a model system for studying the detailed kinetics of Li intercalation/de-intercalation in such electrodes.;In chapter 7, cyclic voltammetry (CV) and EIS are compared as techniques for analyzing double layer capacitances of ionic liquids (ILs) at the surfaces of two carbon-based electrodes. These systems are relevant for energy storage supercapacitors and often are associated with unconventional electrochemical properties. In chapter 8, the electrochemical interfaces of a glassy carbon (GC) and a carbon nanotube (CNT) paper electrode have been studied in EmimBF 4 and BmimBF4 ILs using CV and EIS.
Keywords/Search Tags:Electrochemical, Systems, EIS, Applications
Related items