Font Size: a A A

Electrodeposition of titania and barium titanate thin films for high dielectric applications

Posted on:2011-11-12Degree:Ph.DType:Dissertation
University:State University of New York at BinghamtonCandidate:Roy, Biplab KumarFull Text:PDF
GTID:1441390002968311Subject:Chemistry
Abstract/Summary:
In order to address the requirement of a low-temperature low-cost cost processing for depositing high dielectric constant ceramic films for applications in embedded capacitor and flexible electronics technology, two different chemical bath processes, namely, thermohydrolytic deposition (TD) and cathodic electrodeposition (ED) have been exploited to generate titania thin films. In thermohydrolytic deposition technique, titania films were generated from acidic aqueous solution of titanium chloride on F: SnO2 coated glass and Si substrates by temperature assisted hydrolysis mechanism. On the other hand, in cathodic electrodeposition, in-situ electro-generation of hydroxyl ions triggered a fast deposition of titania on conductive substrates such as copper and F: SnO2 coated glass from peroxotitanium solution at low temperatures (∼0°C). In both techniques, solution compositions affected the morphology and crystallinity of the films. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques have been employed to perform such characterization. As both processes utilized water as solvent, the as-deposited films contained hydroxyl ligand or physically adsorbed water molecules in the titania layer. Besides that, electrodeposited films contained peroxotitanium bonds which were characterized by FTIR studies. Although as-electrodeposited titania films were X-ray amorphous, considerable crystallinity could be generated by heat treatment. The films obtained from both the processes showed v moderately high dielectric constant (ranging from 9-30 at 100 kHz) and high breakdown voltage (0.09-0.15 MV/cm) in electrical measurements.;To further improve the dielectric constant, electrodeposited titania films were converted to barium titanate films in high pH barium ion containing solution at 80-90°C. The resultant film contained cubic crystalline barium titanate verified by XRD analysis. Simple low-temperature hydrothermal technique of conversion worked perfect for F:SnO2 coated glass substrates, but in this process, high pH precursor caused corrosion in copper substrates and deposition of copper oxide in the final films. To overcome this, an innovative technique, which incorporates an electrochemical protection of substrates by application of cathodic potential in addition to common hydrothermal conversion, has been adopted. Films generated by common hydrothermal technique on F:SnO 2/glass substrates and via electrochemical-hydrothermal technique on Cu substrates showed promising dielectric behavior.;Apart from the experimental studies, this report also includes various thermodynamic studies related to hydrolysis and precipitation of titanium ion, protection of copper during titania deposition and barium titanate conversion. Gibbs free energy based model and speciation studies were used to understand supersaturation which is a controlling factor in thermohydrolytic deposition. Similar approaches were utilized to understand the possibilities of barium titanate formation at different Ba2+ concentrations with different pH conditions. Possibilities of atmospheric carbon dioxide incorporation to generate barium carbonate instead of barium titanate formation were also determined by mathematical calculations. Whenever relevant, results of such theoretical analysis were utilized to design the experiment or to explain the experimental observations.
Keywords/Search Tags:Films, High dielectric, Barium titanate, Titania, Deposition, Sno2 coated glass
Related items