Font Size: a A A

Application of liquid-liquid interactions with single-walled carbon nanotubes

Posted on:2010-02-19Degree:Ph.DType:Dissertation
University:University of FloridaCandidate:Wang, Randy Kai-WeiFull Text:PDF
GTID:1441390002973384Subject:Chemistry
Abstract/Summary:
This study covers three important research topics related to the application of liquid-liquid interaction with single-walled carbon nanotubes (SWNTs). The first topic describes the removal of SWNT bundles from liquid suspensions of nanotubes. The key to this work includes the use of liquid-liquid interfaces to trap the SWNT bundles due to the free energy change of the system during the process.;SWNTs pack into crystalline ropes that form bundles due to strong van der Waals attraction. Bundling diminishes mechanical and electronic properties because it could interrupt the electronic structure of the nanotubes. Also, the electronic devices based on as-grown nanotubes, which contains a mixture of individual nanotubes and nanotube bundles, make the electrical response unpredictable. We developed a new simple process to remove bundles by liquid-liquid interaction. SWNTs bundles are trapped at the interface because bundles stabilize the emulsions. Eliminating the use of ultracentrifugation to remove SWNT bundles enables large-scale production with reduced production costs and time savings.;The second topic presented the swelling effect of the surfactant layer surrounding SWNTs with nonpolar solvents. Solvatochromic shifts in the absorbance and fluorescence spectra are observed when surfactant-stabilized aqueous SWNT suspensions are mixed with immiscible organic solvents. When aqueous surfactant-suspended SWNTs are mixed with certain solvents, the spectra closely match the peaks for SWNTs dispersed in only that solvent. These spectral changes suggest the hydrophobic region of the micelle surrounding SWNTs swells with the organic solvent when mixed. The solvatochromic shifts of the aqueous SWNT suspensions are reversible once the solvent evaporates. However, some surfactant-solvent systems show permanent changes to the fluorescence emission intensity after exposure to the organic solvent. The intensity of some large diameter SWNT (n, m) types increase by more than 175%. These differences are attributed to surfactant reorganization, which can improve nanotube coverage, resulting in decreased exposure to quenching mechanisms from the aqueous phase.;The third topic describes the further study of the solvatochromism of the SWNTs. Since SWNTs are encapsulated with microenvironments of nonpolar solvents, it provides a new method to measure the photophysical properties of nanotubes in environments with known properties. Fluorescence and absorbance spectra of SWNTs show solvatochromic shifts in 16 nonpolar solvents, which are proportional to the solvent induction polarization. The photophysical properties of SWNTs were used to determine the relationship between the longitudinal polarizability and other nanotube properties, alpha11,|| ∝ 1/(R2E11 3). (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)...
Keywords/Search Tags:Nanotubes, SWNT, Liquid-liquid, Swnts
Related items