Font Size: a A A

Electrospinning cellulose based nanofibers for sensor applications

Posted on:2010-10-26Degree:Ph.DType:Dissertation
University:Michigan State UniversityCandidate:Nartker, StevenFull Text:PDF
GTID:1441390002978369Subject:Chemistry
Abstract/Summary:
Bacterial pathogens have recently become a serious threat to the food and water supply. A biosensor based on an electrochemical immunoassay has been developed for detecting food borne pathogens, such as Escherichia coli (E. coli) O157:H7. These sensors consist of several materials including, cellulose, cellulose nitrate, polyaniline and glass fibers. The current sensors have not been optimized in terms of microscale architecture and materials. The major problem associated with the current sensors is the limited concentration range of pathogens that provides a linear response on the concentration conductivity chart. Electrospinning is a process that can be used to create a patterned fiber mat design that will increase the linear range and lower the detection limit of these sensors by improving the microscale architecture. Using the electrospinning process to produce novel mats of cellulose nitrate will offer improved surface area, and the cellulose nitrate can be treated to further improve chemical interactions required for sensor activity.;The macro and micro architecture of the sensor is critical to the performance of the sensors. Electrospinning technology can be used to create patterned architectures of nanofibers that will enhance sensor performance. To date electrospinning of cellulose nitrate has not been performed and optimization of the electrospinning process will provide novel materials suitable for applications such as filtration and sensing. The goal of this research is to identify and elucidate the primary materials and process factors necessary to produce cellulose nitrate nanofibers using the electrospinning process that will improve the performance of biosensors.;Cellulose nitrate is readily dissolved in common organic solvents such as acetone, tetrahydrofuran (THF) and N,N dimethylformamide (DMF). These solvents can be mixed with other latent solvents such as ethanol and other alcohols to provide a solvent system with good electrospinning behavior. Using cellulose nitrate in biosensor materials provides excellent antibody binding characteristics that are resistant to pH changes.;Sensors will be constructed of electrospun materials and compared to existing materials. The main advantage of electrospinning fiber mats is the increased surface area, and controllable morphology, which ultimately affects biosensor performance. Characterization tools will include Environmental Scanning Electron Microscopy (ESEM), BET N2 adsorption, X-Ray Photoelectron Spectroscopy (XPS), Dynamic Mechanical Analysis (DMA) and AC impedance.
Keywords/Search Tags:Electrospinning, Cellulose, Sensor, Nanofibers
Related items