Font Size: a A A

Grain growth and the Zener pinning phenomenon: A computational and experimental investigation

Posted on:2009-05-13Degree:Ph.DType:Dissertation
University:Carnegie Mellon UniversityCandidate:Roberts, ChristopherFull Text:PDF
GTID:1441390005455679Subject:Engineering
Abstract/Summary:
A nickel alloy, Waspaloy, with an equiaxed microstructure and random texture was studied to examine its grain growth behavior and, in particular, stagnation of growth via precipitate pinning. The grain growth kinetics matched the model developed by Anderson and Grong [1] during the early stages of grain growth. At later times, the grain growth kinetics did not closely match any existing model or theory, but the deviation from existing models could be partially explained by a transition in the growth mechanism. Grain growth was found to slow down significantly after an increase in grain size by a factor of two, yet, did continue at a substantially reduced rate. Based on complementary observations of the microstructures, the growth mechanism is classified as normal grain growth for short anneals whereas abnormal grain growth (AGG) occurred during longer anneals.; A mean carbide size of approximately 1.2mum (r) and 0.002 volume fraction (VV) was measured on large area mosaics. Applying Zener's equation in the form of D L ≈ 1.33 r&d1;VV yielded a predicted limiting grain size, DL, of 800mum while a mean intercept length of 430mum was measured experimentally on a sample annealed for 2 weeks at 1100°C.; A massively parallel implementation of the Potts-based Monte Carlo model provided a controlled environment in which specific aspects of grain growth and pinning were tested. The simulation analyses revealed early stage grain growth trends similar to experiment. Anisotropie simulations with uniform (random) texture gave similar results to isotropic grain boundary property simulations further lessening the likelihood that anisotropie grain boundary properties play any role in abnormal grain growth. Isotropic simulations conducted with low volume fractions of inert particles experienced normal grain growth and Zener pinning. The measured limiting grain size DL was less than the Zener prediction. On the other hand, a transition from normal to abnormal grain growth was observed in a few of the isotropic grain boundary property simulations. The key result is that the non-random placement of particles with respect to the grain boundaries combined with an initial grain size smaller than the Zener limit facilitates abnormal grain growth.
Keywords/Search Tags:Grain growth, Grain size, Zener pinning, Isotropic grain boundary property simulations, Size DL
Related items