Font Size: a A A

Analysis of lead free tin-silver-copper and tin-lead solder wetting reactions

Posted on:2008-06-22Degree:Ph.DType:Dissertation
University:State University of New York at BinghamtonCandidate:Anson, Scott JFull Text:PDF
GTID:1441390005967619Subject:Engineering
Abstract/Summary:PDF Full Text Request
Lead free electronics soldering is driven by a combination of health and environmental concerns, international legislation and marketing pressure by lead free electronics manufacturing competitors. Since July 1, 2006, companies that do not comply with the European Union legislation are not able to sell circuit assemblies with lead solder in the European Union. China has developed its own regulations, based on the European Union documents with a compliance date of March 1, 2007.; Extensive testing by the electronics community has determined that the Sn - Ag - Cu (SAC) family of alloys is the preferred choice for lead free Surface Mount Technology (SMT) soldering. The 96.5Sn/3.0Ag/0.5Cu alloy was used in this study.; Lead free soldering requires an increase in reflow peak temperatures which further aggravates component moisture sensitivity risks and thereby decreases assembly yield. Prior research has revealed an enhanced solder spreading phenomena at lower peak temperature and shorter time above liquidus with 63Sn/37Pb solder.; This current research investigated solder wetting reactions in 63Sn/37Pb and 96.5Sn/3.0Ag/0.5Cu (SAC305) using materials and manufacturing systems that are industry relevant. The objective was to advance the knowledge base of metal wetting while developing a reflow assembly process that minimized the component defect rates. The components are damaged during reflow by popcorn delamination, which is the result of moisture absorption and subsequent rapid evaporation. A classical Design Of Experiments (DOE) approach was used, with wetted area as the response variable. Outside of the DOE, substrate dissolution depth, and substrate surface new phase formation (reaction product) distance from the triple line (solder wetting front) and reaction product thickness in the solder joint (under the solder) were also analyzed. The samples were analyzed for correlation of reflow peak temperature, reflow Time Above Liquidus (TAL), wetted area, reaction product distance from the triple line, substrate dissolution depth, triple line ridge (substrate protrusion into the molten solder) formation and reaction product thickness in the solder joint.; The general results are (1) an improved understanding of 63Sn/37Pb and 96.5Sn/3.0Ag/0.5Cu WT% solder wetting reactions, (2) reduced 63Sn/37Pb and SAC reflow peak temperatures, and thereby reduced risk of moisture sensitivity damage to components. The significance of these results are (1) enhanced applied understanding of the complexity of molten metal wetting a substrate and (2) enhanced assembly yield due to minimal aggravation of component moisture sensitivity. The uniqueness of this research is that it utilized a holistic Systems Science approach which provided a combined microscopic (substrate and molten metal reactions) and macroscopic (wetted area) analysis of metal wetting using materials and processes that were directly relevant to electronics manufacturing.
Keywords/Search Tags:Solder, Lead free, Wetting, Reaction, Electronics, Wetted area
PDF Full Text Request
Related items