Font Size: a A A

Modeling of a heat sink and high heat flux vapor chamber

Posted on:2010-07-10Degree:Ph.DType:Dissertation
University:University of California, Los AngelesCandidate:Vadnjal, AleksanderFull Text:PDF
GTID:1442390002473038Subject:Engineering
Abstract/Summary:PDF Full Text Request
An increasing demand for a higher heat flux removal capability within a smaller volume for high power electronics led us to focus on a novel cold plate design. A high heat flux evaporator and micro channel heat sink are the main components of a cold plate which is capable of removing couple of 100 W/cm2. In order to describe performance of such porous media device a proper modeling has to be addressed. A universal approach based on the volume average theory (VAT) to transport phenomena in porous media is shown. An approach on how to treat the closure for momentum and energy equations is addressed and a proper definition for friction factors and heat transfer coefficients are discussed. A numerical scheme using a solution to Navier-Stokes equations over a representative elementary volume (REV) and the use of VAT is developed to show how to compute friction factors and heat transfer coefficients. The calculation show good agreement with the experimental data. For the heat transfer coefficient closure, a proper average for both fluid and solid is investigated. Different types of heating are also investigated in order to determine how it influences the heat transfer coefficient.;A higher heat fluxes in small area condensers led us to the micro channels in contrast to the classical heat fin design. A micro channel can have various shapes to enhance heat transfer, but the shape that will lead to a higher heat flux removal with a moderate pumping power needs to be determined. The standard micro-channel terminology is usually used for channels with a simple cross section, e.g. square, round, triangle, etc., but here the micro channel cross section is going to be expanded to describe more complicated and interconnected micro scale channel cross sections. The micro channel geometries explored are pin fins (in-line and staggered) and sintered porous micro channels. The problem solved here is a conjugate problem involving two heat transfer mechanisms; (1) porous media conductivity and (2) internal heat transfer coefficient. Volume averaging theory (VAT) is used to rigorously cast the point wise conservation of energy, momentum and mass equations into a form that represents the thermal and hydraulic properties of the micro channel (porous media) morphology. Using the resulting VAT based field equations, optimization of a micro channel heated from one side is used to determine the optimum micro channel morphology. A small square of 1 cm2 is chosen as an example and the thermal resistance, 0C/W, and pressure drop are shown as a function of Reynolds number.;The high heat flux removal on small surfaces at moderately small temperatures is achieved by bi-porous evaporator The device was analyzed with the possibility of heat flux magnitudes exceeding 1kW/cm2 by using advantages of a dual pore structure of a bi-porous wick. The heat transfer model of a thin bi-porous wick is developed and it incorporates thermo-physical properties of a bi-porous media. It is shown that physics of heat removal is characterized in three stages; conduction, big pore drying out and small pore drying out. The operating conditions of the wick have to be in a safe margin away from the total dry out. A complete dry out of the wick inevitably leads to the burn out, therefore more concern has been added to modeling of big pore dry out, since this will be a desired operational. The construction of the boiling/evaporation curves was successfully constructed by the model showing that the physic of heat removal on two different length scales is governed by thermo-physical properties for the appropriate scale. The model shows good prediction for various combinations of big and small pores size in the bi-porous wicks tested.
Keywords/Search Tags:Heat, Small, Model, Micro channel, Porous, Pore, Volume, VAT
PDF Full Text Request
Related items