Font Size: a A A

Flexoelectricity and piezoelectricity in nanostructures and consequences for energy harvesting and storage

Posted on:2011-11-29Degree:Ph.DType:Dissertation
University:University of HoustonCandidate:Majdoub, Mohamed SabriFull Text:PDF
GTID:1442390002954895Subject:Engineering
Abstract/Summary:
In response to mechanical stimuli, certain crystalline dielectrics (piezoelectrics) electrically polarize. Symmetry considerations restrict it to be non-zero only for dielectrics belonging to crystallographic point groups that admit non-centrosymmetry. A non-uniform strain field or the presence of strain gradients can, however, locally break inversion symmetry and induce polarization even in centrosymmetric crystals. This phenomenon is termed flexoelectrictiy. Recently, flexoelectricity has caught the attention of several researchers and indeed some have proposed tantalizing notions related to this phenomenon such as "piezoelectric materials without using piezoelectric materials," "renormalization of Curie temperature in ferroelectric thin films" and "electro-mechanical nano-indentation size-effect," among others.;In this dissertation, we investigate (using theoretical and atomistic methods) the role of flexoelectricity in nanostructures that are already piezoelectric and the emergent consequences for electromechanical behavior, energy harvesting and storage.;We show that flexoelectricity can result in a significant enhancement of the effective piezoelectric response of nanostructures, e.g., as much as 300% in tetragonal (piezoelectric) BaTiO3 nanobeams. In a certain optimum size range, piezoelectric nanostructures also exhibit enhanced energy harvesting.;Energy storage is a major bottleneck in the emerging "energy crisis." Next generation advances in energy storage and nanoelectronics require capacitors fabricated at the nanoscale. High dielectric constant materials such as ferroelectrics are important candidates for those. Recent work has shown that, despite popular belief, electrostatic nanocapacitor arrays can be used for high energy storage density as well and not just high power density (i.e., paving the way for large scale application such as the automobile). Consider the following: the expected capacitance of a 2.7 nm SrTiO3 thin film is 1600 fFmicrom -2. What is the likely value in reality? 258 fFmicrom-2 ! This dramatic drop in capacitance is attributed to the so-called "dead layer" effect. Using theoretical and quantum mechanical calculations we elucidate the mechanisms behind the intrinsic "dead layer" effect. State-of-the-art fabrication methods and nearly atomistic control of interfaces have ruled out purely defect based arguments on the origin of the "dead layer." We find that nearly the entire drop in capacitance at the nanoscale is due to flexoelectricity. The latter crucially depends on the local curvature and electric field penetration at the metal-dielectric interface. Our work thus provides a path for geometrical design of interfaces to mitigate the dead-layer effect.
Keywords/Search Tags:Piezoelectric, Energy, Flexoelectricity, Nanostructures, Storage
Related items