Font Size: a A A

Inorganic-based proton conductive composite membranes for elevated temperature and reduced relative humidity PEM fuel cells

Posted on:2011-02-27Degree:Ph.DType:Dissertation
University:The Pennsylvania State UniversityCandidate:Wang, ChunmeiFull Text:PDF
GTID:1442390002968371Subject:Engineering
Abstract/Summary:
Proton exchange membrane (PEM) fuel cells are regarded as highly promising energy conversion systems for future transportation and stationary power generation and have been under intensive investigations for the last decade. Unfortunately, cutting edge PEM fuel cell design and components still do not allow economically commercial implementation of this technology. The main obstacles are high cost of proton conductive membranes, low-proton conductivity at low relative humidity (RH), and dehydration and degradation of polymer membranes at high temperatures.;The objective of this study was to develop a systematic approach to design a high proton conductive composite membrane that can provide a conductivity of approximately 100 mS cm-1 under hot and dry conditions (120 °C and 50 % RH). The approach was based on fundamental and experimental studies of the proton conductivity of inorganic additives and composite membranes. We synthesized and investigated a variety of organic-inorganic Nafion-based composite membranes. In particular, we analyzed their fundamental properties, which included thermal stability, morphology, the interaction between inorganic network and Nafion clusters, and the effect of inorganic phase on the membrane conductivity.;A wide range of inorganic materials was studied in advance in order to select the proton conductive inorganic additives for composite membranes. We developed a conductivity measurement method, with which the proton conductivity characteristics of solid acid materials, zirconium phosphates, sulfated zirconia (S-ZrO2), phosphosilicate gels, and Santa Barbara Amorphous silica (SBA-15) were discussed in detail.;Composite membranes containing Nafion and different amounts of functionalized inorganic additives (sulfated inorganics such as S-ZrO2, SBA-15, Mobil Composition of Matter MCM-41, and S-SiO2, and phosphonated inorganic P-SiO2) were synthesized with different methods. We incorporated inorganic particles within Nafion clusters either by mixing inorganic gels or solutions with Nafion solution followed by membrane casting or by blending inorganic powders with Nafion solution. The membrane properties, such as acidity, swelling, water uptake, thermostability, proton conductivity, and electrochemical performance, were explored in depth. We characterized the inorganic phase inside composite membranes and its interaction with the Nafion matrix by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Furthermore, we discussed the effect of these inorganic conductors' properties, such as particle size, conductivity, and interaction between functional groups and the Nafion, on the membrane conductivity. The contribution of hydrophilic inorganic particles in improving the membrane fuel cell performance was numerically analyzed by Tafel plot.;Finally, the proton conductivity phenomena in composite membranes were simulated with two proton-transport models; one was based on the rule of mixtures, and the other was described by generalized Stefan-Maxwell equations. In the simulation, we proposed a new route in rational design of high proton-conductive composite membranes.
Keywords/Search Tags:Composite membranes, Proton, Inorganic, PEM, Fuel, Conductivity
Related items