Plasma-assisted combustion: Systematic decoupling of the kinetic enhancement mechanisms of ignition, flame propagation, and flame stabilization by long-lifetime species | | Posted on:2010-05-17 | Degree:Ph.D | Type:Dissertation | | University:Princeton University | Candidate:Ombrello, Timothy M | Full Text:PDF | | GTID:1442390002976240 | Subject:Engineering | | Abstract/Summary: | PDF Full Text Request | | The advancement of propulsion devices and combustion systems has created ever increasingly more restrictive reactive environments that push the limits of combustion technology. Precise combustion control for higher efficiencies, reduced emissions, and limited residence times to react can exceed what is possible with traditional combustion chemistry, and therefore require new and creative solutions. The application of plasma to combustion systems offers a promising solution, with significant enhancement having been shown by many researchers. Nevertheless, there remain many unknowns with respect to the key species and mechanisms of enhancement.;Detailed systematic experimental and numerical investigations were performed to identify the kinetic mechanisms of combustion enhancement by long-lifetime species generated by non-equilibrium plasma discharges. Two burner systems were adopted and integrated with plasma discharge devices to establish unique combustion platforms to study ignition, flame propagation, and flame stabilization phenomena.;A counterflow diffusion flame burner was adopted for the investigation of the effects of plasma on flame stabilization. A newly developed non-equilibrium magnetic gliding arc plasma discharge was integrated with a counterflow diffusion flame burner and was found to significantly extend the limits of flame stabilization when activating air. Laser diagnostic methods of planar Rayleigh scattering and OH planar laser-induced fluorescence were applied and comparison to numerical simulations showed that the extension of the extinction limits was predominately through thermal effects due to rapid recombination of radicals.;To elucidate the kinetic effects of plasma, the counterflow burner was augmented for ignition experiments. The application of Fourier transform infrared spectroscopy and comparison to numerical simulations showed significant kinetic ignition enhancement by plasma-produced NOx when activating air. The results established the existence of new ignition regimes for NO x addition that were strongly dependent upon the strain rates (residence times) in the system. The addition of small concentrations of fuel to the air upstream of the plasma produced fuel fragments and partially oxidized products that inhibited ignition. The dominating effects of plasma-produced NOx significantly mitigated the inhibitive effects of these species on chain-branching reaction pathways.;To further decouple the plasma-flame interaction, the two long-lifetime plasma species of O3 and O2(a1Delta g) were produced, isolated, measured, and transported to a lifted flame burner to investigate their effect on flame propagation speed. The effects of O3 at atmospheric and sub-atmospheric pressure were found to be significant because of the decomposition of O3 releasing O to rapidly react with the fuel and extract chemical heat early in the pre-heat zone of the flame. The effect of O2(a1Delta g) was isolated by the addition of NO to the plasma afterglow to eliminate O3 and O catalytically. The O2(a1Delta g) was isolated, measured quantitatively using high sensitivity off-axis integrated cavity output absorption spectroscopy, and observed to enhance flame speed. The comparison of experimental and numerical simulation results showed that the current enhancement mechanism including O2(a 1Deltag) could not accurately explain the increase in flame speed observed. Furthermore, a novel filter system was developed to minimize the concentration of all plasma-produced species other than O3 and O2(a1Deltag) through gas phase and wall surface quenching.;Lastly, a new simplified and well-defined plasma-combustion system was developed to provide a platform to study the plasma-flame interaction. In addition, a flow visualization technique was proposed by using plasma activation and NO seeding which could be applied to a system where particle seeding of the flow is prohibitive. | | Keywords/Search Tags: | Plasma, Combustion, System, Flame, Enhancement, Ignition, Species, Kinetic | PDF Full Text Request | Related items |
| |
|