Font Size: a A A

Flexible twist for pitch control in a high altitude long endurance aircraft with nonlinear response

Posted on:2009-06-12Degree:Ph.DType:Dissertation
University:Air Force Institute of TechnologyCandidate:Bond, Vanessa LFull Text:PDF
GTID:1442390005454802Subject:Engineering
Abstract/Summary:
Information dominance is the key motivator for employing high-altitude long-endurance (HALE) aircraft to provide continuous coverage in the theaters of operation. A joined-wing configuration of such a craft gives the advantage of a platform for higher resolution sensors. Design challenges emerge with structural flexibility that arise from a long-endurance aircraft design.;The goal of this research was to demonstrate that scaling the nonlinear response of a full-scale finite element model was possible if the model was aeroelastically and "nonlinearly" scaled. The research within this dissertation showed that using the first three modes and the first bucking modes was not sufficient for proper scaling.;In addition to analytical scaling several experiments were accomplished to understand and overcome design challenges of HALE aircraft. One such challenge is combated by eliminating pitch control surfaces and replacing them with an aft-wing twist concept. This design option was physically realized through wind tunnel measurement of forces, moments and pressures on a subscale experimental model. This design and experiment demonstrated that pitch control with aft-wing twist is feasible.;Another challenge is predicting the nonlinear response of long-endurance aircraft. This was addressed by experimental validation of modeling nonlinear response on a subscale experimental model. It is important to be able to scale nonlinear behavior in this type of craft due to its highly flexible nature. The validation accomplished during this experiment on a subscale model will reduce technical risk for full-scale development of such pioneering craft. It is also important to experimentally reproduce the air loads following the wing as it deforms. Nonlinearities can be attributed to these follower forces that might otherwise be overlooked. This was found to be a significant influence in HALE aircraft to include the case study of the FEM and experimental models herein.
Keywords/Search Tags:Aircraft, HALE, Pitch control, Nonlinear response, Model, Twist, Experimental
Related items