Font Size: a A A

Stability of cobalt oxide infiltrated LSM/TZ8Y cathode for solid oxide fuel cells at intermediate temperatures

Posted on:2009-02-17Degree:Ph.DType:Dissertation
University:University of California, BerkeleyCandidate:Chen, XuanFull Text:PDF
GTID:1442390005954306Subject:Engineering
Abstract/Summary:
The performance of a La0.4Sr0.6MnO3/8wt% Y2O3-stabilized ZrO2 (LSM/YZ8Y) composite cathode was observed to increase by post-firing doping (infiltration) of cobalt nitrate into the pores of an LSM/TZ8Y cathode in solid oxide fuel cells. Results demonstrated that cobalt nitrate decomposed into nano-sized spinel structures of Co3O4 of sizes ranging from 40 to 60 nm. The stability of a Co3O4 infiltrated LSM/TZ8Y cathode was studied under both oxidizing and reducing environments at 700°C.;This dissertation studied the coarsening effects of Co3O 4 nano-particles in the pores of LSM/TZ8Y cathodes and its chemical interaction between LSM and TZ8Y during 1000 hours of exposure to air. A scanning electron microscopy (SEM) was used to observe the microstructure. Polarization curves and electrochemical impedance spectroscopy were used to electrochemically characterize LSM/TZ8Y half cells (oxygen pump) with applied cathodic currents before and after Co3O4 infiltration. The chemical interactions of Co3O4 and an LSM/TZ8Y cathode were studied under the effects of a reducing atmosphere at various currents applied to the cathode, e.g., 500mA/cm2, 1500mA/cm2 and 3A/cm 2. The corresponding partial pressure of oxygen (P O2) at the cathode was observed and calculated from a built-in oxygen sensor which monitored applied cathodic currents. Chemical reactions were characterized through the use scanning transmission electron microscopy (STEM), energy dispersive spectrometry (EDS), and X-ray diffraction (XRD) analysis.
Keywords/Search Tags:LSM/TZ8Y cathode, Cobalt, Oxide, Cells
Related items