Font Size: a A A

Micromechanical analysis and design of an integrated thermal protection system for future space vehicles

Posted on:2008-08-08Degree:Ph.DType:Dissertation
University:University of FloridaCandidate:Martinez, OscarFull Text:PDF
GTID:1442390005955591Subject:Engineering
Abstract/Summary:
Thermal protection systems (TPS) are the key features incorporated into a spacecraft's design to protect it from severe aerodynamic heating during high-speed travel through planetary atmospheres. The thermal protection system is the key technology that enables a spacecraft to be lightweight, fully reusable, and easily maintainable. Add-on TPS concepts have been used since the beginning of the space race. The Apollo space capsule used ablative TPS and the Space Shuttle Orbiter TPS technology consisted of ceramic tiles and blankets. Many problems arose from the add-on concept such as incompatibility, high maintenance costs, non-load bearing, and not being robust and operable. To make the spacecraft's TPS more reliable, robust, and efficient, we investigated Integral Thermal Protection System (ITPS) concept in which the load-bearing structure and the TPS are combined into one single component.; The design of an ITPS was a challenging task, because the requirement of a load-bearing structure and a TPS are often conflicting. Finite element (FE) analysis is often the preferred method of choice for a structural analysis problem. However, as the structure becomes complex, the computational time and effort for an FE analysis increases. New structural analytical tools were developed, or available ones were modified, to perform a full structural analysis of the ITPS. With analytical tools, the designer is capable of obtaining quick and accurate results and has a good idea of the response of the structure without having to go to an FE analysis. A MATLABRTM code was developed to analytically determine performance metrics of the ITPS such as stresses, buckling, deflection, and other failure modes. The analytical models provide fast and accurate results that were within 5% difference from the FEM results. The optimization procedure usually performs 100 function evaluations for every design variable. Using the analytical models in the optimization procedure was a time saver, because the optimization time to reach an optimum design was reached in less than an hour, where as an FE optimization study would take hours to reach an optimum design.; Corrugated-core structures were designed for ITPS applications with loads and boundary conditions similar to that of a Space Shuttle-like vehicle. Temperature, buckling, deflection and stress constraints were considered for the design and optimization process. An optimized design was achieved with consideration of all the constraints. The ITPS design obtained from the analytical solutions was lighter (4.38 lb/ft2) when compared to the ITPS design obtained from a finite element analysis (4.85 lb/ft 2). The ITPS boundary effects added local stresses and compressive loads to the top facesheet that was not able to be captured by the 2D plate solutions. The inability to fully capture the boundary effects lead to a lighter ITPS when compared to the FE solution. However, the ITPS can withstand substantially large mechanical loads when compared to the previous designs. Truss-core structures were found to be unsuitable as they could not withstand the large thermal gradients frequently encountered in ITPS applications.
Keywords/Search Tags:Thermal protection system, TPS, Space, Structure
Related items